ClusterDDPM: An EM clustering framework with Denoising Diffusion
Probabilistic Models
- URL: http://arxiv.org/abs/2312.08029v1
- Date: Wed, 13 Dec 2023 10:04:06 GMT
- Title: ClusterDDPM: An EM clustering framework with Denoising Diffusion
Probabilistic Models
- Authors: Jie Yan, Jing Liu and Zhong-yuan Zhang
- Abstract summary: Denoising diffusion probabilistic models (DDPMs) represent a new and promising class of generative models.
In this study, we introduce an innovative expectation-maximization (EM) framework for clustering using DDPMs.
In the M-step, our focus lies in learning clustering-friendly latent representations for the data by employing the conditional DDPM and matching the distribution of latent representations to the mixture of Gaussian priors.
- Score: 9.91610928326645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational autoencoder (VAE) and generative adversarial networks (GAN) have
found widespread applications in clustering and have achieved significant
success. However, the potential of these approaches may be limited due to VAE's
mediocre generation capability or GAN's well-known instability during
adversarial training. In contrast, denoising diffusion probabilistic models
(DDPMs) represent a new and promising class of generative models that may
unlock fresh dimensions in clustering. In this study, we introduce an
innovative expectation-maximization (EM) framework for clustering using DDPMs.
In the E-step, we aim to derive a mixture of Gaussian priors for the subsequent
M-step. In the M-step, our focus lies in learning clustering-friendly latent
representations for the data by employing the conditional DDPM and matching the
distribution of latent representations to the mixture of Gaussian priors. We
present a rigorous theoretical analysis of the optimization process in the
M-step, proving that the optimizations are equivalent to maximizing the lower
bound of the Q function within the vanilla EM framework under certain
constraints. Comprehensive experiments validate the advantages of the proposed
framework, showcasing superior performance in clustering, unsupervised
conditional generation and latent representation learning.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Deep Generative Clustering with VAEs and Expectation-Maximization [1.8416014644193066]
We propose a novel deep clustering method that integrates Variational Autoencoders (VAEs) into the Expectation-Maximization framework.
Our approach models the probability distribution of each cluster with a VAE and alternates between updating model parameters.
This enables effective clustering and generation of new samples from each cluster.
arXiv Detail & Related papers (2025-01-13T14:26:39Z) - Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective [52.662463893268225]
Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios.
Existing SHGL methods encounter two significant limitations.
We introduce a novel framework enhanced by rank and dual consistency constraints.
arXiv Detail & Related papers (2024-12-01T09:33:20Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Generative Marginalization Models [21.971818180264943]
marginalization models (MAMs) are a new family of generative models for high-dimensional discrete data.
They offer scalable and flexible generative modeling by explicitly modeling all induced marginal distributions.
For energy-based training tasks, MAMs enable any-order generative modeling of high-dimensional problems beyond the scale of previous methods.
arXiv Detail & Related papers (2023-10-19T17:14:29Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - A Hybrid of Generative and Discriminative Models Based on the
Gaussian-coupled Softmax Layer [5.33024001730262]
We propose a method to train a hybrid of discriminative and generative models in a single neural network.
We demonstrate that the proposed hybrid model can be applied to semi-supervised learning and confidence calibration.
arXiv Detail & Related papers (2023-05-10T05:48:22Z) - Tight integration of neural- and clustering-based diarization through
deep unfolding of infinite Gaussian mixture model [84.57667267657382]
This paper introduces a it trainable clustering algorithm into the integration framework.
Speaker embeddings are optimized during training such that it better fits iGMM clustering.
Experimental results show that the proposed approach outperforms the conventional approach in terms of diarization error rate.
arXiv Detail & Related papers (2022-02-14T07:45:21Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
Constrained clustering can leverage prior information on a growing amount of only partially labeled data.
We propose a novel framework for constrained clustering that is intuitive, interpretable, and can be trained efficiently in the framework of gradient variational inference.
arXiv Detail & Related papers (2021-06-11T13:38:09Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.