PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs
- URL: http://arxiv.org/abs/2312.08074v2
- Date: Thu, 23 May 2024 07:28:01 GMT
- Title: PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs
- Authors: Mark Turner, Antonia Chmiela, Thorsten Koch, Michael Winkler,
- Abstract summary: We introduce PySCIPOpt-ML, an open-source tool for embedding machine learning predictors into optimisation problems.
By interfacing with a broad range of commonly used ML frameworks and an open-source MIP solver, PySCIPOpt-ML provides a way to easily integrate ML constraints into optimisation problems.
We present computational results over SurrogateLIB, providing intuition on the scale of ML predictors that can be practically embedded.
- Score: 0.7661676407098753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems, information about the relationships between variables is either incomplete or highly complex, making it difficult or even impossible to model the problem directly. To overcome these hurdles, machine learning (ML) predictors are often used to represent these relationships and are then embedded in the MIP as surrogate models. Due to the large amount of available ML frameworks and the complexity of many ML predictors, formulating such predictors into MIPs is a highly non-trivial task. In this paper, we introduce PySCIPOpt-ML, an open-source tool for the automatic formulation and embedding of trained ML predictors into MIPs. By directly interfacing with a broad range of commonly used ML frameworks and an open-source MIP solver, PySCIPOpt-ML provides a way to easily integrate ML constraints into optimisation problems. Alongside PySCIPOpt-ML, we introduce, SurrogateLIB, a library of MIP instances with embedded ML constraints, and present computational results over SurrogateLIB, providing intuition on the scale of ML predictors that can be practically embedded. The project is available at https://github.com/Opt-Mucca/PySCIPOpt-ML.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - LLMs for Cold-Start Cutting Plane Separator Configuration [19.931643536607737]
Mixed integer linear programming solvers ship with a staggering number of parameters that are challenging to select a priori for all but expert optimization users.
Existing machine learning approaches to configure solvers require training ML models by solving thousands of related MILP instances, generalize poorly to new problem sizes, and often require implementing complex ML pipelines and custom solver interfaces.
We present a new LLM-based framework to configure which cutting plane separators to use for a given MILP problem with little to no training data based on characteristics of the instance.
arXiv Detail & Related papers (2024-12-16T18:03:57Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - LLM-PQA: LLM-enhanced Prediction Query Answering [7.346989832385652]
This paper introduces LLM-PQA, a novel tool that addresses prediction queries formulated in natural language.
This integration provides users with access to a vast spectrum of heterogeneous data and diverse ML models, facilitating dynamic prediction query answering.
arXiv Detail & Related papers (2024-09-02T10:20:35Z) - Improved Diversity-Promoting Collaborative Metric Learning for Recommendation [127.08043409083687]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2024-09-02T07:44:48Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm.
Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions.
Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets.
arXiv Detail & Related papers (2021-09-12T18:34:33Z) - A Rigorous Machine Learning Analysis Pipeline for Biomedical Binary
Classification: Application in Pancreatic Cancer Nested Case-control Studies
with Implications for Bias Assessments [2.9726886415710276]
We have laid out and assembled a complete, rigorous ML analysis pipeline focused on binary classification.
This 'automated' but customizable pipeline includes a) exploratory analysis, b) data cleaning and transformation, c) feature selection, d) model training with 9 established ML algorithms.
We apply this pipeline to an epidemiological investigation of established and newly identified risk factors for cancer to evaluate how different sources of bias might be handled by ML algorithms.
arXiv Detail & Related papers (2020-08-28T19:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.