Thermal entanglement in conformal junctions
- URL: http://arxiv.org/abs/2312.08275v2
- Date: Sat, 25 May 2024 07:13:25 GMT
- Title: Thermal entanglement in conformal junctions
- Authors: Luca Capizzi, Andrei Rotaru,
- Abstract summary: We consider a quantum junction described by a 1+1-dimensional boundary conformal field theory (BCFT)
Our analysis focuses on correlations emerging at finite temperature, achieved through the computation of entanglement measures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a quantum junction described by a 1+1-dimensional boundary conformal field theory (BCFT). Our analysis focuses on correlations emerging at finite temperature, achieved through the computation of entanglement measures. Our approach relies on characterizing correlation functions of twist fields using BCFT techniques. We provide non-perturbative predictions for the crossover between low and high temperatures. An intriguing interplay between bulk and boundary effects, associated with the bulk/boundary scaling dimensions of the fields above, is found. In particular, the entanglement entropy is primarily influenced by bulk thermal fluctuations, exhibiting extensiveness for large system sizes with a prefactor independent of the scattering properties of the defect. In contrast, negativity is governed by fluctuations across the entangling points only, adhering to an area law; its value depends non-trivially on the defect, and it diverges logarithmically as the temperature is decreased. To validate our predictions, we numerically check them for free fermions on the lattice, finding good agreement.
Related papers
- Finite-temperature properties of string-net models [0.0]
We compute the partition function of the string-net model and investigate several thermodynamical quantities.
In the thermodynamic limit, we show that the partition function is dominated by the contribution of special particles, dubbed pure fluxons.
We also analyze the behavior of Wegner-Wilson loops associated to excitations and show that they obey an area law.
arXiv Detail & Related papers (2024-06-28T07:51:58Z) - Boundary effect and correlations in fermionic Gaussian states [0.0]
Boundary effect function quantifies the change in the ground state as a function of the distance from the boundary.
We perform numerical analyses of the boundary effect function for one-dimensional free-fermion models.
arXiv Detail & Related papers (2024-04-15T02:46:53Z) - Nonlocality and entanglement in measured critical quantum Ising chains [0.0]
Local degrees of freedom in critical states exhibit long-range entanglement.
We study the effects of measurements, performed with a finite density in space, on the ground state of the one-dimensional transverse-field Ising model at criticality.
arXiv Detail & Related papers (2023-01-19T19:03:37Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Boundary-induced singularity in strongly-correlated quantum systems at
finite temperature [2.2451981098432516]
We study the bulk-boundary competition in a simulative Hamiltonian, with which the thermodynamic properties of the infinite-size translationally-invariant system can be optimally mimicked.
Our results show that such a singularity differs from those in the conventional thermodynamic phase transition points that normally fall into the Landau-Ginzburg paradigm.
arXiv Detail & Related papers (2022-04-14T08:30:30Z) - Localisation determines the optimal noise rate for quantum transport [68.8204255655161]
Localisation and the optimal dephasing rate in 1D chains are studied.
A simple power law captures the interplay between size-dependent and size-independent responses.
Relationship continues to apply at intermediate and high temperature but breaks down in the low temperature limit.
arXiv Detail & Related papers (2021-06-23T17:52:16Z) - Entanglement Entropy of Non-Hermitian Free Fermions [59.54862183456067]
We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry.
Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
arXiv Detail & Related papers (2021-05-20T14:46:09Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.