PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images
- URL: http://arxiv.org/abs/2312.08290v2
- Date: Wed, 10 Jul 2024 16:04:03 GMT
- Title: PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images
- Authors: Anis Bourou, Thomas Boyer, Kévin Daupin, Véronique Dubreuil, Aurélie De Thonel, Valérie Mezger, Auguste Genovesio,
- Abstract summary: PhenDiff identifies shifts in cellular phenotypes by translating a real image from one condition to another.
We qualitatively and quantitatively validate this method on cases where the phenotypic changes are visible or invisible, such as in low concentrations of drug treatments.
- Score: 0.7329200485567825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: For the past few years, deep generative models have increasingly been used in biological research for a variety of tasks. Recently, they have proven to be valuable for uncovering subtle cell phenotypic differences that are not directly discernible to the human eye. However, current methods employed to achieve this goal mainly rely on Generative Adversarial Networks (GANs). While effective, GANs encompass issues such as training instability and mode collapse, and they do not accurately map images back to the model's latent space, which is necessary to synthesize, manipulate, and thus interpret outputs based on real images. In this work, we introduce PhenDiff: a multi-class conditional method leveraging Diffusion Models (DMs) designed to identify shifts in cellular phenotypes by translating a real image from one condition to another. We qualitatively and quantitatively validate this method on cases where the phenotypic changes are visible or invisible, such as in low concentrations of drug treatments. Overall, PhenDiff represents a valuable tool for identifying cellular variations in real microscopy images. We anticipate that it could facilitate the understanding of diseases and advance drug discovery through the identification of novel biomarkers.
Related papers
- Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models [0.815557531820863]
We propose a novel approach that leverages pre-trained latent diffusion models to uncover subtle phenotypic changes.
Our findings reveal that our approach enables effective detection of phenotypic variations, capturing both visually apparent and imperceptible differences.
arXiv Detail & Related papers (2025-02-12T15:45:19Z) - DiffEx: Explaining a Classifier with Diffusion Models to Identify Microscopic Cellular Variations [0.815557531820863]
Discriminative deep learning models have excelled at classifying images into categories.
These models are often perceived as black boxes due to their complexity and lack of interpretability.
We propose DiffEx, a method for generating visually interpretable attributes to explain classifiers.
arXiv Detail & Related papers (2025-02-12T12:46:58Z) - G2PDiffusion: Genotype-to-Phenotype Prediction with Diffusion Models [108.94237816552024]
This paper introduces G2PDiffusion, the first-of-its-kind diffusion model designed for genotype-to-phenotype generation across multiple species.
We use images to represent morphological phenotypes across species and redefine phenotype prediction as conditional image generation.
arXiv Detail & Related papers (2025-02-07T06:16:31Z) - DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
We propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts.
We collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process.
The learned artifact detector is then involved in the second stage to tune the diffusion model through assigning a per-pixel confidence map for each image.
arXiv Detail & Related papers (2025-01-21T18:56:41Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Diffusion Facial Forgery Detection [56.69763252655695]
This paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images.
We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods.
The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%.
arXiv Detail & Related papers (2024-01-29T03:20:19Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
We propose the first diffusion-based model (named DiffMIC) to address general medical image classification.
Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-03-19T09:15:45Z) - Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle
Phenotypes [0.5076419064097732]
We present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images.
We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations.
arXiv Detail & Related papers (2023-01-21T16:25:04Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
We conduct a search for good representations in pathology by training a variety of self-supervised models with validation on a variety of weakly-supervised and patch-level tasks.
Our key finding is in discovering that Vision Transformers using DINO-based knowledge distillation are able to learn data-efficient and interpretable features in histology images.
arXiv Detail & Related papers (2022-03-01T16:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.