Universal Approximation Property of Random Neural Networks
- URL: http://arxiv.org/abs/2312.08410v2
- Date: Wed, 20 Dec 2023 08:16:10 GMT
- Title: Universal Approximation Property of Random Neural Networks
- Authors: Ariel Neufeld, Philipp Schmocker
- Abstract summary: We prove a universal approximation within a large class of Bochner spaces.
We derive approximation rates and an explicit algorithm to learn a deterministic function by a random neural network.
- Score: 3.943289808718775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study random neural networks which are single-hidden-layer
feedforward neural networks whose weights and biases are randomly initialized.
After this random initialization, only the linear readout needs to be trained,
which can be performed efficiently, e.g., by the least squares method. By
viewing random neural networks as Banach space-valued random variables, we
prove a universal approximation theorem within a large class of Bochner spaces.
Hereby, the corresponding Banach space can be significantly more general than
the space of continuous functions over a compact subset of a Euclidean space,
namely, e.g., an $L^p$-space or a Sobolev space, where the latter includes the
approximation of the derivatives. Moreover, we derive approximation rates and
an explicit algorithm to learn a deterministic function by a random neural
network. In addition, we provide a full error analysis and study when random
neural networks overcome the curse of dimensionality in the sense that the
training costs scale at most polynomially in the input and output dimension.
Furthermore, we show in two numerical examples the empirical advantages of
random neural networks compared to fully trained deterministic neural networks.
Related papers
- Nonuniform random feature models using derivative information [10.239175197655266]
We propose nonuniform data-driven parameter distributions for neural network initialization based on derivative data of the function to be approximated.
We address the cases of Heaviside and ReLU activation functions, and their smooth approximations (sigmoid and softplus)
We suggest simplifications of these exact densities based on approximate derivative data in the input points that allow for very efficient sampling and lead to performance of random feature models close to optimal networks in several scenarios.
arXiv Detail & Related papers (2024-10-03T01:30:13Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - Learning Single-Index Models with Shallow Neural Networks [43.6480804626033]
We introduce a natural class of shallow neural networks and study its ability to learn single-index models via gradient flow.
We show that the corresponding optimization landscape is benign, which in turn leads to generalization guarantees that match the near-optimal sample complexity of dedicated semi-parametric methods.
arXiv Detail & Related papers (2022-10-27T17:52:58Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
We consider neural network approximation spaces that classify functions according to the rate at which they can be approximated.
We prove embedding theorems between these spaces for different values of $p$.
We find that, analogous to the case of classical function spaces, it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability.
arXiv Detail & Related papers (2021-10-28T17:11:38Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Function Approximation via Sparse Random Features [23.325877475827337]
This paper introduces the sparse random feature method that learns parsimonious random feature models utilizing techniques from compressive sensing.
We show that the sparse random feature method outperforms shallow networks for well-structured functions and applications to scientific machine learning tasks.
arXiv Detail & Related papers (2021-03-04T17:53:54Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.