Universal approximation property of Banach space-valued random feature models including random neural networks
- URL: http://arxiv.org/abs/2312.08410v3
- Date: Tue, 22 Oct 2024 17:29:47 GMT
- Title: Universal approximation property of Banach space-valued random feature models including random neural networks
- Authors: Ariel Neufeld, Philipp Schmocker,
- Abstract summary: We introduce a Banach space-valued extension of random feature learning.
By randomly initializing the feature maps, only the linear readout needs to be trained.
We derive approximation rates and an explicit algorithm to learn an element of the given Banach space.
- Score: 3.3379026542599934
- License:
- Abstract: We introduce a Banach space-valued extension of random feature learning, a data-driven supervised machine learning technique for large-scale kernel approximation. By randomly initializing the feature maps, only the linear readout needs to be trained, which reduces the computational complexity substantially. Viewing random feature models as Banach space-valued random variables, we prove a universal approximation result in the corresponding Bochner space. Moreover, we derive approximation rates and an explicit algorithm to learn an element of the given Banach space by such models. The framework of this paper includes random trigonometric/Fourier regression and in particular random neural networks which are single-hidden-layer feedforward neural networks whose weights and biases are randomly initialized, whence only the linear readout needs to be trained. For the latter, we can then lift the universal approximation property of deterministic neural networks to random neural networks, even within function spaces over non-compact domains, e.g., weighted spaces, $L^p$-spaces, and (weighted) Sobolev spaces, where the latter includes the approximation of the (weak) derivatives. In addition, we analyze when the training costs for approximating a given function grow polynomially in both the input/output dimension and the reciprocal of a pre-specified tolerated approximation error. Furthermore, we demonstrate in a numerical example the empirical advantages of random feature models over their deterministic counterparts.
Related papers
- Nonuniform random feature models using derivative information [10.239175197655266]
We propose nonuniform data-driven parameter distributions for neural network initialization based on derivative data of the function to be approximated.
We address the cases of Heaviside and ReLU activation functions, and their smooth approximations (sigmoid and softplus)
We suggest simplifications of these exact densities based on approximate derivative data in the input points that allow for very efficient sampling and lead to performance of random feature models close to optimal networks in several scenarios.
arXiv Detail & Related papers (2024-10-03T01:30:13Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - Learning Single-Index Models with Shallow Neural Networks [43.6480804626033]
We introduce a natural class of shallow neural networks and study its ability to learn single-index models via gradient flow.
We show that the corresponding optimization landscape is benign, which in turn leads to generalization guarantees that match the near-optimal sample complexity of dedicated semi-parametric methods.
arXiv Detail & Related papers (2022-10-27T17:52:58Z) - Sobolev-type embeddings for neural network approximation spaces [5.863264019032882]
We consider neural network approximation spaces that classify functions according to the rate at which they can be approximated.
We prove embedding theorems between these spaces for different values of $p$.
We find that, analogous to the case of classical function spaces, it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability.
arXiv Detail & Related papers (2021-10-28T17:11:38Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Function Approximation via Sparse Random Features [23.325877475827337]
This paper introduces the sparse random feature method that learns parsimonious random feature models utilizing techniques from compressive sensing.
We show that the sparse random feature method outperforms shallow networks for well-structured functions and applications to scientific machine learning tasks.
arXiv Detail & Related papers (2021-03-04T17:53:54Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.