Consistent and Asymptotically Unbiased Estimation of Proper Calibration
Errors
- URL: http://arxiv.org/abs/2312.08589v1
- Date: Thu, 14 Dec 2023 01:20:08 GMT
- Title: Consistent and Asymptotically Unbiased Estimation of Proper Calibration
Errors
- Authors: Teodora Popordanoska, Sebastian G. Gruber, Aleksei Tiulpin, Florian
Buettner, Matthew B. Blaschko
- Abstract summary: We propose a method that allows consistent estimation of all proper calibration errors and refinement terms.
We prove the relation between refinement and f-divergences, which implies information monotonicity in neural networks.
Our experiments validate the claimed properties of the proposed estimator and suggest that the selection of a post-hoc calibration method should be determined by the particular calibration error of interest.
- Score: 23.819464242327257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proper scoring rules evaluate the quality of probabilistic predictions,
playing an essential role in the pursuit of accurate and well-calibrated
models. Every proper score decomposes into two fundamental components -- proper
calibration error and refinement -- utilizing a Bregman divergence. While
uncertainty calibration has gained significant attention, current literature
lacks a general estimator for these quantities with known statistical
properties. To address this gap, we propose a method that allows consistent,
and asymptotically unbiased estimation of all proper calibration errors and
refinement terms. In particular, we introduce Kullback--Leibler calibration
error, induced by the commonly used cross-entropy loss. As part of our results,
we prove the relation between refinement and f-divergences, which implies
information monotonicity in neural networks, regardless of which proper scoring
rule is optimized. Our experiments validate empirically the claimed properties
of the proposed estimator and suggest that the selection of a post-hoc
calibration method should be determined by the particular calibration error of
interest.
Related papers
- Optimizing Estimators of Squared Calibration Errors in Classification [2.3020018305241337]
We propose a mean-squared error-based risk that enables the comparison and optimization of estimators of squared calibration errors.
Our approach advocates for a training-validation-testing pipeline when estimating a calibration error.
arXiv Detail & Related papers (2024-10-09T15:58:06Z) - A Confidence Interval for the $\ell_2$ Expected Calibration Error [35.88784957918326]
We develop confidence intervals $ell$ Expected the Error (ECE)
We consider top-1-to-$k$ calibration, which includes both the popular notion of confidence calibration as well as calibration.
For a debiased estimator of the ECE, we show normality, but with different convergence rates and variances for calibrated and misd models.
arXiv Detail & Related papers (2024-08-16T20:00:08Z) - Orthogonal Causal Calibration [55.28164682911196]
We prove generic upper bounds on the calibration error of any causal parameter estimate $theta$ with respect to any loss $ell$.
We use our bound to analyze the convergence of two sample splitting algorithms for causal calibration.
arXiv Detail & Related papers (2024-06-04T03:35:25Z) - Towards Certification of Uncertainty Calibration under Adversarial Attacks [96.48317453951418]
We show that attacks can significantly harm calibration, and thus propose certified calibration as worst-case bounds on calibration under adversarial perturbations.
We propose novel calibration attacks and demonstrate how they can improve model calibration through textitadversarial calibration training
arXiv Detail & Related papers (2024-05-22T18:52:09Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Parametric and Multivariate Uncertainty Calibration for Regression and
Object Detection [4.630093015127541]
We show that common detection models overestimate the spatial uncertainty in comparison to the observed error.
Our experiments show that the simple Isotonic Regression recalibration method is sufficient to achieve a good calibrated uncertainty.
In contrast, if normal distributions are required for subsequent processes, our GP-Normal recalibration method yields the best results.
arXiv Detail & Related papers (2022-07-04T08:00:20Z) - Better Uncertainty Calibration via Proper Scores for Classification and
Beyond [15.981380319863527]
We introduce the framework of proper calibration errors, which relates every calibration error to a proper score.
This relationship can be used to reliably quantify the model calibration improvement.
arXiv Detail & Related papers (2022-03-15T12:46:08Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
We propose a fine-grained calibration metric that spans the gap between fully global and fully individualized calibration.
We then introduce a localized recalibration method, LoRe, that improves the LCE better than existing recalibration methods.
arXiv Detail & Related papers (2021-02-22T07:22:12Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z) - Calibration of Neural Networks using Splines [51.42640515410253]
Measuring calibration error amounts to comparing two empirical distributions.
We introduce a binning-free calibration measure inspired by the classical Kolmogorov-Smirnov (KS) statistical test.
Our method consistently outperforms existing methods on KS error as well as other commonly used calibration measures.
arXiv Detail & Related papers (2020-06-23T07:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.