A Generalized Neural Diffusion Framework on Graphs
- URL: http://arxiv.org/abs/2312.08616v5
- Date: Mon, 22 Apr 2024 02:04:20 GMT
- Title: A Generalized Neural Diffusion Framework on Graphs
- Authors: Yibo Li, Xiao Wang, Hongrui Liu, Chuan Shi,
- Abstract summary: We propose a general diffusion equation framework with the fidelity term, which formally establishes the relationship between the diffusion process with more GNNs.
With the high-order diffusion equation, HiD-Net is more robust against attacks and works on both homophily and heterophily graphs.
- Score: 36.867530311300925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies reveal the connection between GNNs and the diffusion process, which motivates many diffusion-based GNNs to be proposed. However, since these two mechanisms are closely related, one fundamental question naturally arises: Is there a general diffusion framework that can formally unify these GNNs? The answer to this question can not only deepen our understanding of the learning process of GNNs, but also may open a new door to design a broad new class of GNNs. In this paper, we propose a general diffusion equation framework with the fidelity term, which formally establishes the relationship between the diffusion process with more GNNs. Meanwhile, with this framework, we identify one characteristic of graph diffusion networks, i.e., the current neural diffusion process only corresponds to the first-order diffusion equation. However, by an experimental investigation, we show that the labels of high-order neighbors actually exhibit monophily property, which induces the similarity based on labels among high-order neighbors without requiring the similarity among first-order neighbors. This discovery motives to design a new high-order neighbor-aware diffusion equation, and derive a new type of graph diffusion network (HiD-Net) based on the framework. With the high-order diffusion equation, HiD-Net is more robust against attacks and works on both homophily and heterophily graphs. We not only theoretically analyze the relation between HiD-Net with high-order random walk, but also provide a theoretical convergence guarantee. Extensive experimental results well demonstrate the effectiveness of HiD-Net over state-of-the-art graph diffusion networks.
Related papers
- ReDiSC: A Reparameterized Masked Diffusion Model for Scalable Node Classification with Structured Predictions [64.17845687013434]
We propose ReDiSC, a structured diffusion model for structured node classification.<n>We show that ReDiSC achieves superior or highly competitive performance compared to state-of-the-art GNN, label propagation, and diffusion-based baselines.<n> Notably, ReDiSC scales effectively to large-scale datasets on which previous structured diffusion methods fail due to computational constraints.
arXiv Detail & Related papers (2025-07-19T04:46:53Z) - Exploring Molecule Generation Using Latent Space Graph Diffusion [0.0]
Generating molecular graphs is a challenging task due to their discrete nature and the competitive objectives involved.
For molecular graphs, graph neural networks (GNNs) as a diffusion backbone have achieved impressive results.
Latent space diffusion, where diffusion occurs in a low-dimensional space via an autoencoder, has demonstrated computational efficiency.
arXiv Detail & Related papers (2025-01-07T10:54:44Z) - The Superposition of Diffusion Models Using the Itô Density Estimator [46.03684204456143]
We show that SuperDiff is scalable to large pre-trained diffusion models.
We also show that SuperDiff is efficient during inference time, and mimics traditional composition operators.
We empirically demonstrate the utility of using SuperDiff for generating more diverse images on CIFAR-10.
arXiv Detail & Related papers (2024-12-23T18:18:07Z) - Bundle Neural Networks for message diffusion on graphs [10.018379001231356]
We show that Bundle Neural Networks (BuNNs) can approximate any feature transformation over nodes on any graphs given injective positional encodings.
We also prove that BuNNs can approximate any feature transformation over nodes on any family of graphs given injective positional encodings, resulting in universal node-level expressivity.
arXiv Detail & Related papers (2024-05-24T13:28:48Z) - Graph Neural Aggregation-diffusion with Metastability [4.040326569845733]
Continuous graph neural models based on differential equations have expanded the architecture of graph neural networks (GNNs)
We propose GRADE inspired by graph aggregation-diffusion equations, which includes the delicate balance between nonlinear diffusion and aggregation induced by interaction potentials.
We prove that GRADE achieves competitive performance across various benchmarks and alleviates the over-smoothing issue in GNNs.
arXiv Detail & Related papers (2024-03-29T15:05:57Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - HD-GCN:A Hybrid Diffusion Graph Convolutional Network [13.906335023159002]
We introduce a new framework for graph convolutional networks called Hybrid Diffusion-based Graph Convolutional Network (HD-GCN)
HD-GCN utilizes hybrid diffusion by combining information diffusion between neighborhood nodes in the feature space and adjacent nodes in the adjacency matrix.
We evaluate the performance of HD-GCN on three well-known citation network datasets.
arXiv Detail & Related papers (2023-03-31T11:12:25Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data.
This work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators.
We evaluate ED-HNN for node classification on nine real-world hypergraph datasets.
arXiv Detail & Related papers (2022-07-14T06:17:00Z) - Neural Sheaf Diffusion: A Topological Perspective on Heterophily and
Oversmoothing in GNNs [16.88394293874848]
We use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs.
By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands.
We prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their behaviour.
arXiv Detail & Related papers (2022-02-09T17:25:02Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.