CattleEyeView: A Multi-task Top-down View Cattle Dataset for Smarter
Precision Livestock Farming
- URL: http://arxiv.org/abs/2312.08764v1
- Date: Thu, 14 Dec 2023 09:18:02 GMT
- Title: CattleEyeView: A Multi-task Top-down View Cattle Dataset for Smarter
Precision Livestock Farming
- Authors: Kian Eng Ong, Sivaji Retta, Ramarajulu Srinivasan, Shawn Tan, Jun Liu
- Abstract summary: We introduce CattleEyeView dataset, the first top-down view multi-task cattle video dataset.
The dataset contains 753 distinct top-down cow instances in 30,703 frames.
We perform benchmark experiments to evaluate the model's performance for each task.
- Score: 6.291219495092237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cattle farming is one of the important and profitable agricultural
industries. Employing intelligent automated precision livestock farming systems
that can count animals, track the animals and their poses will raise
productivity and significantly reduce the heavy burden on its already limited
labor pool. To achieve such intelligent systems, a large cattle video dataset
is essential in developing and training such models. However, many current
animal datasets are tailored to few tasks or other types of animals, which
result in poorer model performance when applied to cattle. Moreover, they do
not provide top-down views of cattle. To address such limitations, we introduce
CattleEyeView dataset, the first top-down view multi-task cattle video dataset
for a variety of inter-related tasks (i.e., counting, detection, pose
estimation, tracking, instance segmentation) that are useful to count the
number of cows and assess their growth and well-being. The dataset contains 753
distinct top-down cow instances in 30,703 frames (14 video sequences). We
perform benchmark experiments to evaluate the model's performance for each
task. The dataset and codes can be found at
https://github.com/AnimalEyeQ/CattleEyeView.
Related papers
- MultiCamCows2024 -- A Multi-view Image Dataset for AI-driven Holstein-Friesian Cattle Re-Identification on a Working Farm [2.9391768712283772]
We present MultiCamCows2024, a farm-scale image dataset filmed across multiple cameras for the biometric identification of individual Holstein-Friesian cattle.
The dataset comprises 101, 329 images of 90 cows, plus the underlying original CCTV footage.
We show that our framework enables fully automatic cattle identification, barring only the simple human verification of tracklet integrity.
arXiv Detail & Related papers (2024-10-16T15:58:47Z) - Public Computer Vision Datasets for Precision Livestock Farming: A Systematic Survey [3.3651853492305177]
This study presents the first systematic survey of publicly available livestock CV datasets.
Among 58 public datasets identified and analyzed, almost half of them are for cattle, followed by swine, poultry, and other animals.
Individual animal detection and color imaging are the dominant application and imaging modality for livestock.
arXiv Detail & Related papers (2024-06-15T13:22:41Z) - AnimalFormer: Multimodal Vision Framework for Behavior-based Precision Livestock Farming [0.0]
We introduce a multimodal vision framework for precision livestock farming.
We harness the power of GroundingDINO, HQSAM, and ViTPose models.
This suite enables comprehensive behavioral analytics from video data without invasive animal tagging.
arXiv Detail & Related papers (2024-06-14T04:42:44Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36K is the first large-scale benchmark for animal pose estimation and tracking.
It consists of 2,400 video clips collected and filtered from 30 animal species with 15 frames for each video, resulting in 36,000 frames in total.
We benchmark several representative models on the following three tracks: (1) supervised animal pose estimation on a single frame under intra- and inter-domain transfer learning settings, (2) inter-species domain generalization test for unseen animals, and (3) animal pose estimation with animal tracking.
arXiv Detail & Related papers (2022-06-12T07:18:36Z) - StyleGAN-Human: A Data-Centric Odyssey of Human Generation [96.7080874757475]
This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering"
We collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures.
We rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment.
arXiv Detail & Related papers (2022-04-25T17:55:08Z) - Animal Kingdom: A Large and Diverse Dataset for Animal Behavior
Understanding [4.606145900630665]
We create a large and diverse dataset, Animal Kingdom, that provides multiple annotated tasks.
Our dataset contains 50 hours of annotated videos to localize relevant animal behavior segments.
We propose a Collaborative Action Recognition (CARe) model that learns general and specific features for action recognition with unseen new animals.
arXiv Detail & Related papers (2022-04-18T02:05:15Z) - Livestock Monitoring with Transformer [4.298326853567677]
We develop an end-to-end behaviour monitoring system for group-housed pigs to perform simultaneous instance level segmentation, tracking, action recognition and re-identification tasks.
We present starformer, the first end-to-end multiple-object livestock monitoring framework that learns instance-level embeddings for grouped pigs through the use of transformer architecture.
arXiv Detail & Related papers (2021-11-01T10:03:49Z) - Multi-Task Self-Training for Learning General Representations [97.01728635294879]
Multi-task self-training (MuST) harnesses the knowledge in independent specialized teacher models to train a single general student model.
MuST is scalable with unlabeled or partially labeled datasets and outperforms both specialized supervised models and self-supervised models when training on large scale datasets.
arXiv Detail & Related papers (2021-08-25T17:20:50Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
We present an extensive dataset of free-running cheetahs in the wild, called AcinoSet.
The dataset contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames.
The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided.
arXiv Detail & Related papers (2021-03-24T15:54:11Z) - Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences
for Urban Scene Segmentation [57.68890534164427]
In this work, we ask if we may leverage semi-supervised learning in unlabeled video sequences and extra images to improve the performance on urban scene segmentation.
We simply predict pseudo-labels for the unlabeled data and train subsequent models with both human-annotated and pseudo-labeled data.
Our Naive-Student model, trained with such simple yet effective iterative semi-supervised learning, attains state-of-the-art results at all three Cityscapes benchmarks.
arXiv Detail & Related papers (2020-05-20T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.