Livestock feeding behaviour: A review on automated systems for ruminant monitoring
- URL: http://arxiv.org/abs/2312.09259v3
- Date: Tue, 2 Jul 2024 20:04:32 GMT
- Title: Livestock feeding behaviour: A review on automated systems for ruminant monitoring
- Authors: José Chelotti, Luciano Martinez-Rau, Mariano Ferrero, Leandro Vignolo, Julio Galli, Alejandra Planisich, H. Leonardo Rufiner, Leonardo Giovanini,
- Abstract summary: This paper is the first tutorial-style review on the analysis of the feeding behaviour of ruminants.
It assesses the main sensing methodologies and the main techniques to measure and analyse the signals associated with feeding behaviour.
It also highlights the potentiality of automated monitoring systems to provide valuable information.
- Score: 33.7054351451505
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Livestock feeding behaviour is an influential research area for those involved in animal husbandry and agriculture. In recent years, there has been a growing interest in automated systems for monitoring the behaviour of ruminants. Despite the developments accomplished in the last decade, there is still much to do and learn about the methods for measuring and analysing livestock feeding behaviour. Automated monitoring systems mainly use motion, acoustic, and image sensors to collect animal behavioural data. The performance evaluation of existing methods is a complex task and direct comparisons between studies are difficult. Several factors prevent a direct comparison, starting from the diversity of data and performance metrics used in the experiments. To the best of our knowledge, this work represents the first tutorial-style review on the analysis of the feeding behaviour of ruminants, emphasising the relationship between sensing methodologies, signal processing, and computational intelligence methods. It assesses the main sensing methodologies (i.e. based on movement, sound, images/videos, and pressure) and the main techniques to measure and analyse the signals associated with feeding behaviour, evaluating their use in different settings and situations. It also highlights the potentiality of automated monitoring systems to provide valuable information that improves our understanding of livestock feeding behaviour. The relevance of these systems is increasingly important due to their impact on production systems and research. Finally, the paper closes by discussing future challenges and opportunities in livestock feeding behaviour monitoring.
Related papers
- Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
Video-based behavioral monitoring has great potential for transforming how we study animal cognition and behavior.
There is still a fairly large gap between the exciting prospects and what can actually be achieved in practice today.
arXiv Detail & Related papers (2024-01-29T18:59:56Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Review on Social Behavior Analysis of Laboratory Animals: From
Methodologies to Applications [0.0]
We explore a variety of behaviour detection algorithms, covering traditional vision methods, statistical methods and deep learning methods.
The objective of this work is to provide a thorough investigation of related work, furnishing biologists with a scratch of efficient animal behaviour detection methods.
arXiv Detail & Related papers (2022-06-25T13:40:35Z) - Automated Mobility Context Detection with Inertial Signals [7.71058263701836]
The primary goal of this paper is the investigation of context detection for remote monitoring of daily motor functions.
We aim to understand whether inertial signals sampled with wearable accelerometers, provide reliable information to classify gait-related activities as either indoor or outdoor.
arXiv Detail & Related papers (2022-05-16T09:34:43Z) - Self-supervised Video Object Segmentation by Motion Grouping [79.13206959575228]
We develop a computer vision system able to segment objects by exploiting motion cues.
We introduce a simple variant of the Transformer to segment optical flow frames into primary objects and the background.
We evaluate the proposed architecture on public benchmarks (DAVIS2016, SegTrackv2, and FBMS59)
arXiv Detail & Related papers (2021-04-15T17:59:32Z) - Dairy Cow rumination detection: A deep learning approach [0.8312466807725921]
Rumination behavior is a significant variable for tracking the development and yield of animal husbandry.
Modern attached devices are invasive, stressful and uncomfortable for the cattle.
In this study, we introduce an innovative monitoring method using Convolution Neural Network (CNN)-based deep learning models.
arXiv Detail & Related papers (2021-01-07T07:33:32Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
The field of Human Activity Recognition (HAR) focuses on obtaining and analysing data captured from monitoring devices (e.g. sensors)
We address the issue of accurately recognising human activities using different Machine Learning (ML) techniques.
arXiv Detail & Related papers (2020-05-15T00:46:55Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
This paper focuses on the identification of prey handling activity in seals.
Data taken into consideration are streams of 3D accelerometers and depth sensors values collected by devices attached directly on seals.
We propose an automatic model based on Machine Learning (ML) algorithms.
arXiv Detail & Related papers (2020-02-10T15:30:08Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
We propose a computational method, within a modified visual version of the well-known Stroop test, for the identification of different tasks and potential conflicts events.
A statistical analysis shows that the selected variables can characterize the variation of attentive load within different scenarios.
We show that Machine Learning techniques allow to distinguish between different tasks with a good classification accuracy.
arXiv Detail & Related papers (2020-02-03T17:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.