Employing an operator form of the Rodrigues formula to calculate
wavefunctions without differential equations
- URL: http://arxiv.org/abs/2312.09327v1
- Date: Thu, 14 Dec 2023 20:21:17 GMT
- Title: Employing an operator form of the Rodrigues formula to calculate
wavefunctions without differential equations
- Authors: Joseph R. Noonan, Maaz ur Rehman Shah, Luogen Xu, and James. K.
Freericks
- Abstract summary: The factorization method of Schrodinger shows us how to determine the energy eigenstates without needing to determine the wavefunctions in position or momentum space.
This approach can be used in either undergraduate or graduate classes in quantum mechanics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The factorization method of Schrodinger shows us how to determine the energy
eigenstates without needing to determine the wavefunctions in position or
momentum space. A strategy to convert the energy eigenstates to wavefunctions
is well known for the one-dimensional simple harmonic oscillator by employing
the Rodrigues formula for the Hermite polynomials in position or momentum
space. In this work, we illustrate how to generalize this approach in a
representation-independent fashion to find the wavefunctions of other problems
in quantum mechanics that can be solved by the factorization method. We examine
three problems in detail: (i) the one-dimensional simple harmonic oscillator;
(ii) the three-dimensional isotropic harmonic oscillator; and (iii) the
three-dimensional Coulomb problem. This approach can be used in either
undergraduate or graduate classes in quantum mechanics.
Related papers
- Quantum model of hydrogen-like atoms in hilbert space by introducing the
creation and annihilation operators [0.0]
An analytical approach with series is extensively used based on wave mechanics theory in most of quantum textbooks.
We will illustrate how systematically making an appropriate groundwork to discover the coherent states can lead to providing the energy quantization and normalized radial wave functions attached to the matrix representation.
arXiv Detail & Related papers (2023-08-25T14:42:55Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - An application of the HeunB function [0.0]
How does the inclusion of the gravitational potential alter an otherwise exact quantum mechanical result?
The Schrodinger equation for the reduced mass is then solved to obtain the parabolic cylinder functions as eigenfunctions and the eigenvalues of the reduced Hamiltonian are calculated exactly.
The eigenvalues are the determined from a recent series expansion in terms of the Hermite functions for the solution of the differential equation whose exact solution is the aforesaid HeunB function.
arXiv Detail & Related papers (2022-12-17T17:04:49Z) - Angular Momentum Eigenstates of the Isotropic 3-D Harmonic Oscillator:
Phase-Space Distributions and Coalescence Probabilities [0.0]
We compute the probabilities for coalescence of two distinguishable, non-relativistic particles into a bound state.
We use a phase-space formulation and hence need the Wigner distribution functions of angular momentum eigenstates.
arXiv Detail & Related papers (2021-12-22T23:16:44Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Two electrons in harmonic confinement coupled to light in a cavity [62.997667081978825]
The energy and wave function of a harmonically confined two-electron system coupled to light is calculated.
Relative motion wave function has a known quasi-analytical solution.
arXiv Detail & Related papers (2021-08-03T18:56:50Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - Calculating the distance from an electronic wave function to the
manifold of Slater determinants through the geometry of Grassmannians [0.0]
We propose an algorithm that converges to a Slater determinant that is critical point of the overlap function with a correlated wave function.
This algorithm can be applied to quantify the entanglement or correlation of a wave function.
arXiv Detail & Related papers (2020-12-09T19:46:47Z) - Quantum Mechanics in Wavelet Basis [0.0]
We describe a multi-scale resolution approach to analyzing problems in Quantum Mechanics using Daubechies wavelet basis.
The expansion of the wavefunction of the quantum system in this basis allows a natural interpretation of each basis function as a quantum fluctuation of a specific resolution at a particular location.
arXiv Detail & Related papers (2020-10-14T10:47:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.