Prediction of rare events in the operation of household equipment using
co-evolving time series
- URL: http://arxiv.org/abs/2312.09410v1
- Date: Fri, 15 Dec 2023 00:21:00 GMT
- Title: Prediction of rare events in the operation of household equipment using
co-evolving time series
- Authors: Hadia Mecheri, Islam Benamirouche, Feriel Fass, Djemel Ziou, Nassima
Kadri
- Abstract summary: Our approach involves a weighted autologistic regression model, where we leverage the temporal behavior of the data to enhance predictive capabilities.
Evaluation on synthetic and real-world datasets confirms that our approach outperform state-of-the-art of predicting home equipment failure methods.
- Score: 1.1249583407496218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we propose an approach for predicting rare events by
exploiting time series in coevolution. Our approach involves a weighted
autologistic regression model, where we leverage the temporal behavior of the
data to enhance predictive capabilities. By addressing the issue of imbalanced
datasets, we establish constraints leading to weight estimation and to improved
performance. Evaluation on synthetic and real-world datasets confirms that our
approach outperform state-of-the-art of predicting home equipment failure
methods.
Related papers
- Deconfounding Time Series Forecasting [1.5967186772129907]
Time series forecasting is a critical task in various domains, where accurate predictions can drive informed decision-making.
Traditional forecasting methods often rely on current observations of variables to predict future outcomes.
We propose an enhanced forecasting approach that incorporates representations of latent confounders derived from historical data.
arXiv Detail & Related papers (2024-10-27T12:45:42Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - A Supervised Contrastive Learning Pretrain-Finetune Approach for Time
Series [15.218841180577135]
We introduce a novel pretraining procedure that leverages supervised contrastive learning to distinguish features within each pretraining dataset.
We then propose a fine-tuning procedure designed to enhance the accurate prediction of the target data by aligning it more closely with the learned dynamics of the pretraining datasets.
arXiv Detail & Related papers (2023-11-21T02:06:52Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
We propose a method to compute prediction intervals for model performance.
We evaluate our approach across a wide range of drift conditions and show substantial improvement over competitive baselines.
arXiv Detail & Related papers (2020-12-15T21:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.