Riveter: Measuring Power and Social Dynamics Between Entities
- URL: http://arxiv.org/abs/2312.09536v1
- Date: Fri, 15 Dec 2023 05:03:24 GMT
- Title: Riveter: Measuring Power and Social Dynamics Between Entities
- Authors: Maria Antoniak, Anjalie Field, Jimin Mun, Melanie Walsh, Lauren F.
Klein, Maarten Sap
- Abstract summary: Riveter provides a complete pipeline for analyzing verb connotations associated with entities in text corpora.
We prepopulate the package with connotation frames of sentiment, power, and agency, which have demonstrated usefulness for capturing social phenomena.
- Score: 20.672174024510745
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Riveter provides a complete easy-to-use pipeline for analyzing verb
connotations associated with entities in text corpora. We prepopulate the
package with connotation frames of sentiment, power, and agency, which have
demonstrated usefulness for capturing social phenomena, such as gender bias, in
a broad range of corpora. For decades, lexical frameworks have been
foundational tools in computational social science, digital humanities, and
natural language processing, facilitating multifaceted analysis of text
corpora. But working with verb-centric lexica specifically requires natural
language processing skills, reducing their accessibility to other researchers.
By organizing the language processing pipeline, providing complete lexicon
scores and visualizations for all entities in a corpus, and providing
functionality for users to target specific research questions, Riveter greatly
improves the accessibility of verb lexica and can facilitate a broad range of
future research.
Related papers
- Combining Objective and Subjective Perspectives for Political News Understanding [5.741243797283764]
We introduce a text analysis framework which integrates both perspectives and provides a fine-grained processing of subjective aspects.
We illustrate its functioning with insights on news outlets, political orientations, topics, individual entities, and demographic segments.
arXiv Detail & Related papers (2024-08-20T20:13:19Z) - ILiAD: An Interactive Corpus for Linguistic Annotated Data from Twitter Posts [0.0]
We present the development and deployment of a linguistic corpus from Twitter posts in English.
The main goal was to create a fully annotated English corpus for linguistic analysis.
We include information on morphology and syntax, as well as NLP features such as tokenization, lemmas, and n- grams.
arXiv Detail & Related papers (2024-07-22T04:48:04Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
The massive collection of user posts across social media platforms is primarily untapped for artificial intelligence (AI) use cases.
Natural language processing (NLP) is a subfield of AI that leverages bodies of documents, known as corpora, to train computers in human-like language understanding.
This study demonstrates that the applied results of unsupervised analysis allow a computer to predict either negative, positive, or neutral user sentiment towards plastic surgery.
arXiv Detail & Related papers (2023-07-05T20:16:20Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - SenteCon: Leveraging Lexicons to Learn Human-Interpretable Language
Representations [51.08119762844217]
SenteCon is a method for introducing human interpretability in deep language representations.
We show that SenteCon provides high-level interpretability at little to no cost to predictive performance on downstream tasks.
arXiv Detail & Related papers (2023-05-24T05:06:28Z) - Lexical Complexity Prediction: An Overview [13.224233182417636]
The occurrence of unknown words in texts significantly hinders reading comprehension.
computational modelling has been applied to identify complex words in texts and substitute them for simpler alternatives.
We present an overview of computational approaches to lexical complexity prediction focusing on the work carried out on English data.
arXiv Detail & Related papers (2023-03-08T19:35:08Z) - Identifying concept libraries from language about object structure [56.83719358616503]
We leverage natural language descriptions for a diverse set of 2K procedurally generated objects to identify the parts people use.
We formalize our problem as search over a space of program libraries that contain different part concepts.
By combining naturalistic language at scale with structured program representations, we discover a fundamental information-theoretic tradeoff governing the part concepts people name.
arXiv Detail & Related papers (2022-05-11T17:49:25Z) - SOCIOFILLMORE: A Tool for Discovering Perspectives [10.189255026322996]
SOCIOFILLMORE is a tool which helps to bring to the fore the perspective that a text expresses in depicting an event.
Our tool, whose rationale we also support through a large collection of human judgements, is theoretically grounded on frame semantics and cognitive linguistics.
arXiv Detail & Related papers (2022-03-07T14:42:22Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
We introduce LAPS (Language for Abstraction and Program Search), a technique for using natural language annotations to guide joint learning of libraries and neurally-guided search models for synthesis.
When integrated into a state-of-the-art library learning system (DreamCoder), LAPS produces higher-quality libraries and improves search efficiency and generalization.
arXiv Detail & Related papers (2021-06-18T15:08:47Z) - TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between
Corpora [14.844685568451833]
We introduce TextEssence, an interactive system designed to enable comparative analysis of corpora using embeddings.
TextEssence includes visual, neighbor-based, and similarity-based modes of embedding analysis in a lightweight, web-based interface.
arXiv Detail & Related papers (2021-03-19T21:26:28Z) - Multi-SimLex: A Large-Scale Evaluation of Multilingual and Cross-Lingual
Lexical Semantic Similarity [67.36239720463657]
Multi-SimLex is a large-scale lexical resource and evaluation benchmark covering datasets for 12 diverse languages.
Each language dataset is annotated for the lexical relation of semantic similarity and contains 1,888 semantically aligned concept pairs.
Owing to the alignment of concepts across languages, we provide a suite of 66 cross-lingual semantic similarity datasets.
arXiv Detail & Related papers (2020-03-10T17:17:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.