Exploiting Library Vulnerability via Migration Based Automating Test
Generation
- URL: http://arxiv.org/abs/2312.09564v1
- Date: Fri, 15 Dec 2023 06:46:45 GMT
- Title: Exploiting Library Vulnerability via Migration Based Automating Test
Generation
- Authors: Zirui Chen, Xing Hu, Xin Xia, Yi Gao, Tongtong Xu, David Lo, Xiaohu
Yang
- Abstract summary: In software development, developers extensively utilize third-party libraries to avoid implementing existing functionalities.
Vulnerability exploits, as code snippets provided for reproducing vulnerabilities after disclosure, contain a wealth of vulnerability-related information.
This study proposes a new method based on vulnerability exploits, called VESTA, which provides vulnerability exploit tests as the basis for developers to decide whether to update dependencies.
- Score: 16.39796265296833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In software development, developers extensively utilize third-party libraries
to avoid implementing existing functionalities. When a new third-party library
vulnerability is disclosed, project maintainers need to determine whether their
projects are affected by the vulnerability, which requires developers to invest
substantial effort in assessment. However, existing tools face a series of
issues: static analysis tools produce false alarms, dynamic analysis tools
require existing tests and test generation tools have low success rates when
facing complex vulnerabilities.
Vulnerability exploits, as code snippets provided for reproducing
vulnerabilities after disclosure, contain a wealth of vulnerability-related
information. This study proposes a new method based on vulnerability exploits,
called VESTA (Vulnerability Exploit-based Software Testing Auto-Generator),
which provides vulnerability exploit tests as the basis for developers to
decide whether to update dependencies. VESTA extends the search-based test
generation methods by adding a migration step, ensuring the similarity between
the generated test and the vulnerability exploit, which increases the
likelihood of detecting potential library vulnerabilities in a project.
We perform experiments on 30 vulnerabilities disclosed in the past five
years, involving 60 vulnerability-project pairs, and compare the experimental
results with the baseline method, TRANSFER. The success rate of VESTA is 71.7\%
which is a 53.4\% improvement over TRANSFER in the effectiveness of verifying
exploitable vulnerabilities.
Related papers
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
We introduce AutoPT, an automated penetration testing agent based on the principle of PSM driven by LLMs.
Our results show that AutoPT outperforms the baseline framework ReAct on the GPT-4o mini model.
arXiv Detail & Related papers (2024-11-02T13:24:30Z) - Unit Test Generation for Vulnerability Exploitation in Java Third-Party Libraries [10.78078711790757]
VULEUT is designed to automatically verify the exploitability of vulnerabilities in third-party libraries commonly used in client software projects.
VULEUT first analyzes the client projects to determine the reachability of vulnerability conditions.
It then leverages the Large Language Model (LLM) to generate unit tests for vulnerability confirmation.
arXiv Detail & Related papers (2024-09-25T07:47:01Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) has been promoted as a tool to increase transparency and verifiability in software composition.
Current SBOM generation tools often suffer from inaccuracies in identifying components and dependencies.
We propose PIP-sbom, a novel pip-inspired solution that addresses their shortcomings.
arXiv Detail & Related papers (2024-09-10T10:12:37Z) - Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects [0.11999555634662631]
This study investigates vulnerabilities in dependencies of sampled open-source software (OSS) projects.
We have identified common issues in outdated or unmaintained dependencies, that pose significant security risks.
Results suggest that reducing the number of direct dependencies and prioritizing well-established libraries with strong security records are effective strategies for enhancing the software security landscape.
arXiv Detail & Related papers (2024-08-26T13:46:48Z) - Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? [14.974832502863526]
In recent years, the importance of smart contract security has been heightened by the increasing number of attacks against them.
To address this issue, a multitude of static application security testing (SAST) tools have been proposed for detecting vulnerabilities in smart contracts.
In this paper, we propose an up-to-date and fine-grained taxonomy that includes 45 unique vulnerability types for smart contracts.
arXiv Detail & Related papers (2024-04-28T13:40:18Z) - Enhancing Large Language Models for Secure Code Generation: A
Dataset-driven Study on Vulnerability Mitigation [24.668682498171776]
Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers.
However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities.
This paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective.
arXiv Detail & Related papers (2023-10-25T00:32:56Z) - Identifying the Risks of LM Agents with an LM-Emulated Sandbox [68.26587052548287]
Language Model (LM) agents and tools enable a rich set of capabilities but also amplify potential risks.
High cost of testing these agents will make it increasingly difficult to find high-stakes, long-tailed risks.
We introduce ToolEmu: a framework that uses an LM to emulate tool execution and enables the testing of LM agents against a diverse range of tools and scenarios.
arXiv Detail & Related papers (2023-09-25T17:08:02Z) - AIBugHunter: A Practical Tool for Predicting, Classifying and Repairing
Software Vulnerabilities [27.891905729536372]
AIBugHunter is a novel ML-based software vulnerability analysis tool for C/C++ languages that is integrated into Visual Studio Code.
We propose a novel multi-objective optimization (MOO)-based vulnerability classification approach and a transformer-based estimation approach to help AIBugHunter accurately identify vulnerability types and estimate severity.
arXiv Detail & Related papers (2023-05-26T04:21:53Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
Testing video games is an increasingly difficult task as traditional methods fail to scale with growing software systems.
We present SUPERNOVA, a system responsible for test selection and defect prevention while also functioning as an automation hub.
The direct impact of this has been observed to be a reduction in 55% or more testing hours for an undisclosed sports game title.
arXiv Detail & Related papers (2022-03-10T00:47:46Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.