Exploring Gender Disparities in Bumble's Match Recommendations
- URL: http://arxiv.org/abs/2312.09626v1
- Date: Fri, 15 Dec 2023 09:09:42 GMT
- Title: Exploring Gender Disparities in Bumble's Match Recommendations
- Authors: Ritvik Aryan Kalra, Pratham Gupta, Ben Varghese and Nimmi Rangaswamy
- Abstract summary: We study bias and discrimination in the context of Bumble, an online dating platform in India.
We conduct an experiment to identify and address the presence of bias in the matching algorithms Bumble pushes to its users.
- Score: 0.27309692684728604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study bias and discrimination in the context of Bumble, an online dating
platform in India. Drawing on research in AI fairness and inclusion studies we
analyze algorithmic bias and their propensity to reproduce bias. We conducted
an experiment to identify and address the presence of bias in the matching
algorithms Bumble pushes to its users in the form of profiles for potential
dates in the real world. Dating apps like Bumble utilize algorithms that learn
from user data to make recommendations. Even if the algorithm does not have
intentions or consciousness, it is a system created and maintained by humans.
We attribute moral agency of such systems to be compositely derived from
algorithmic mediations, the design and utilization of these platforms.
Developers, designers, and operators of dating platforms thus have a moral
obligation to mitigate biases in the algorithms to create inclusive platforms
that affirm diverse social identities.
Related papers
- User Strategization and Trustworthy Algorithms [81.82279667028423]
We show that user strategization can actually help platforms in the short term.
We then show that it corrupts platforms' data and ultimately hurts their ability to make counterfactual decisions.
arXiv Detail & Related papers (2023-12-29T16:09:42Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Assessing Gender Bias in Predictive Algorithms using eXplainable AI [1.9798034349981162]
Predictive algorithms have a powerful potential to offer benefits in areas as varied as medicine or education.
They can inherit the bias and prejudices present in humans.
The outcomes can systematically repeat errors that create unfair results.
arXiv Detail & Related papers (2022-03-19T07:47:45Z) - Choosing an algorithmic fairness metric for an online marketplace:
Detecting and quantifying algorithmic bias on LinkedIn [0.21756081703275995]
We derive an algorithmic fairness metric from the fairness notion of equal opportunity for equally qualified candidates.
We use the proposed method to measure and quantify algorithmic bias with respect to gender of two algorithms used by LinkedIn.
arXiv Detail & Related papers (2022-02-15T10:33:30Z) - Bias: Friend or Foe? User Acceptance of Gender Stereotypes in Automated
Career Recommendations [8.44485053836748]
We show that a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world.
Using career recommendation as a case study, we build a fair AI career recommender by employing gender debiasing machine learning techniques.
arXiv Detail & Related papers (2021-06-13T23:27:45Z) - Beyond Algorithmic Bias: A Socio-Computational Interrogation of the
Google Search by Image Algorithm [0.799536002595393]
We audit the algorithm by presenting it with more than 40 thousands faces of all ages and more than four races.
We find that the algorithm reproduces white male patriarchal structures, often simplifying, stereotyping and discriminating females and non-white individuals.
arXiv Detail & Related papers (2021-05-26T21:40:43Z) - Representative & Fair Synthetic Data [68.8204255655161]
We present a framework to incorporate fairness constraints into the self-supervised learning process.
We generate a representative as well as fair version of the UCI Adult census data set.
We consider representative & fair synthetic data a promising future building block to teach algorithms not on historic worlds, but rather on the worlds that we strive to live in.
arXiv Detail & Related papers (2021-04-07T09:19:46Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
We propose the Gender Stereotype Reinforcement (GSR) measure, which quantifies the tendency of a Search Engines to support gender stereotypes.
GSR is the first specifically tailored measure for Information Retrieval, capable of quantifying representational harms.
arXiv Detail & Related papers (2020-09-02T20:45:04Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.