Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models
- URL: http://arxiv.org/abs/2312.09669v4
- Date: Wed, 5 Jun 2024 04:53:12 GMT
- Title: Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models
- Authors: Jiawei Zhao, Kejiang Chen, Xiaojian Yuan, Yuang Qi, Weiming Zhang, Nenghai Yu,
- Abstract summary: We introduce Silent Guardian, a text protection mechanism against large language models (LLMs)
By carefully modifying the text to be protected, TPE can induce LLMs to first sample the end token, thus directly terminating the interaction.
We show that SG can effectively protect the target text under various configurations and achieve almost 100% protection success rate in some cases.
- Score: 63.91178922306669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of large language models (LLMs) has yielded impressive success in various downstream tasks. However, the vast potential and remarkable capabilities of LLMs also raise new security and privacy concerns if they are exploited for nefarious purposes due to their open-endedness. For example, LLMs may be used to plagiarize or imitate writing, thereby infringing the copyright of the original content, or to create indiscriminate fake information based on a certain source text. In some cases, LLMs can even analyze text from the Internet to infer personal privacy. Unfortunately, previous text protection research could not foresee the emergence of powerful LLMs, rendering it no longer effective in this new context. To bridge this gap, we introduce Silent Guardian (SG), a text protection mechanism against LLMs, which allows LLMs to refuse to generate response when receiving protected text, preventing the malicious use of text from the source. Specifically, we first propose the concept of Truncation Protection Examples (TPE). By carefully modifying the text to be protected, TPE can induce LLMs to first sample the end token, thus directly terminating the interaction. In addition, to efficiently construct TPE in the discrete space of text data, we propose a novel optimization algorithm called Super Tailored Protection (STP), which is not only highly efficient but also maintains the semantic consistency of the text during the optimization process. The comprehensive experimental evaluation demonstrates that SG can effectively protect the target text under various configurations and achieve almost 100% protection success rate in some cases. Notably, SG also exhibits relatively good transferability and robustness, making its application in practical scenarios possible.
Related papers
- SHIELD: Evaluation and Defense Strategies for Copyright Compliance in LLM Text Generation [24.644101178288476]
Large Language Models (LLMs) have transformed machine learning but raised significant legal concerns.
LLMs may infringe on copyrights or overly restrict non-copyrighted texts.
We propose lightweight, real-time defense to prevent the generation of copyrighted text.
arXiv Detail & Related papers (2024-06-18T18:00:03Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
Large language models (LLMs) are increasingly being adopted in a wide range of real-world applications.
Recent studies have shown that LLMs are vulnerable to deliberately crafted adversarial prompts.
We propose a novel defense method termed textbfLayer-specific textbfEditing (LED) to enhance the resilience of LLMs against jailbreak attacks.
arXiv Detail & Related papers (2024-05-28T13:26:12Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly [21.536079040559517]
Large Language Models (LLMs) have revolutionized natural language understanding and generation.
This paper explores the intersection of LLMs with security and privacy.
arXiv Detail & Related papers (2023-12-04T16:25:18Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
Large language models (LLMs) present significant safety and ethical risks if exploited by malicious users.
Recent works have proposed algorithms to detect LLM-generated text and protect LLMs.
We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation.
arXiv Detail & Related papers (2023-05-31T10:08:37Z) - Are You Copying My Model? Protecting the Copyright of Large Language
Models for EaaS via Backdoor Watermark [58.60940048748815]
Companies have begun to offer Embedding as a Service (E) based on large language models (LLMs)
E is vulnerable to model extraction attacks, which can cause significant losses for the owners of LLMs.
We propose an Embedding Watermark method called EmbMarker that implants backdoors on embeddings.
arXiv Detail & Related papers (2023-05-17T08:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.