Learning Distributions on Manifolds with Free-Form Flows
- URL: http://arxiv.org/abs/2312.09852v3
- Date: Mon, 25 Nov 2024 10:47:11 GMT
- Title: Learning Distributions on Manifolds with Free-Form Flows
- Authors: Peter Sorrenson, Felix Draxler, Armand Rousselot, Sander Hummerich, Ullrich Köthe,
- Abstract summary: We propose Manifold Free-Form Flows (M-FFF), a simple new generative model for data on manifold.
M-FFF is straightforwardly adapted to any manifold with a known projection.
It consistently matches or outperforms previous single-step methods.
- Score: 7.773439780305304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Manifold Free-Form Flows (M-FFF), a simple new generative model for data on manifolds. The existing approaches to learning a distribution on arbitrary manifolds are expensive at inference time, since sampling requires solving a differential equation. Our method overcomes this limitation by sampling in a single function evaluation. The key innovation is to optimize a neural network via maximum likelihood on the manifold, possible by adapting the free-form flow framework to Riemannian manifolds. M-FFF is straightforwardly adapted to any manifold with a known projection. It consistently matches or outperforms previous single-step methods specialized to specific manifolds. It is typically two orders of magnitude faster than multi-step methods based on diffusion or flow matching, achieving better likelihoods in several experiments. We provide our code at https://github.com/vislearn/FFF.
Related papers
- Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
Current deep learning approaches rely on generative models that yield exact sample likelihoods.
This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models.
We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
arXiv Detail & Related papers (2024-06-03T17:55:02Z) - Optimal Flow Matching: Learning Straight Trajectories in Just One Step [89.37027530300617]
We develop and theoretically justify the novel textbf Optimal Flow Matching (OFM) approach.
It allows recovering the straight OT displacement for the quadratic transport in just one FM step.
The main idea of our approach is the employment of vector field for FM which are parameterized by convex functions.
arXiv Detail & Related papers (2024-03-19T19:44:54Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - Efficient Multimodal Sampling via Tempered Distribution Flow [11.36635610546803]
We develop a new type of transport-based sampling method called TemperFlow.
Various experiments demonstrate the superior performance of this novel sampler compared to traditional methods.
We show its applications in modern deep learning tasks such as image generation.
arXiv Detail & Related papers (2023-04-08T06:40:06Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation [110.09855163856326]
This paper is about the problem of learning a policy for generating an object from a sequence of actions.
We propose GFlowNet, based on a view of the generative process as a flow network.
We prove that any global minimum of the proposed objectives yields a policy which samples from the desired distribution.
arXiv Detail & Related papers (2021-06-08T14:21:10Z) - Neural Ordinary Differential Equations on Manifolds [0.342658286826597]
Recently normalizing flows in Euclidean space based on Neural ODEs show great promise, yet suffer the same limitations.
We show how vector fields provide a general framework for parameterizing a flexible class of invertible mapping on these spaces.
arXiv Detail & Related papers (2020-06-11T17:56:34Z) - Flows for simultaneous manifold learning and density estimation [12.451050883955071]
manifold-learning flows (M-flows) represent datasets with a manifold structure more faithfully.
M-flows learn the data manifold and allow for better inference than standard flows in the ambient data space.
arXiv Detail & Related papers (2020-03-31T02:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.