Multi-Objective Reinforcement Learning-based Approach for Pressurized Water Reactor Optimization
- URL: http://arxiv.org/abs/2312.10194v3
- Date: Fri, 15 Mar 2024 18:25:34 GMT
- Title: Multi-Objective Reinforcement Learning-based Approach for Pressurized Water Reactor Optimization
- Authors: Paul Seurin, Koroush Shirvan,
- Abstract summary: PEARL distinguishes itself from traditional policy-based multi-objective Reinforcement Learning methods by learning a single policy.
Several versions inspired from deep learning and evolutionary techniques have been crafted, catering to both unconstrained and constrained problem domains.
It is tested on two practical PWR core Loading Pattern optimization problems to showcase its real-world applicability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel method, the Pareto Envelope Augmented with Reinforcement Learning (PEARL), has been developed to address the challenges posed by multi-objective problems, particularly in the field of engineering where the evaluation of candidate solutions can be time-consuming. PEARL distinguishes itself from traditional policy-based multi-objective Reinforcement Learning methods by learning a single policy, eliminating the need for multiple neural networks to independently solve simpler sub-problems. Several versions inspired from deep learning and evolutionary techniques have been crafted, catering to both unconstrained and constrained problem domains. Curriculum Learning is harnessed to effectively manage constraints in these versions. PEARL's performance is first evaluated on classical multi-objective benchmarks. Additionally, it is tested on two practical PWR core Loading Pattern optimization problems to showcase its real-world applicability. The first problem involves optimizing the Cycle length and the rod-integrated peaking factor as the primary objectives, while the second problem incorporates the mean average enrichment as an additional objective. Furthermore, PEARL addresses three types of constraints related to boron concentration, peak pin burnup, and peak pin power. The results are systematically compared against conventional approaches. Notably, PEARL, specifically the PEARL-NdS variant, efficiently uncovers a Pareto front without necessitating additional efforts from the algorithm designer, as opposed to a single optimization with scaled objectives. It also outperforms the classical approach across multiple performance metrics, including the Hyper-volume.
Related papers
- C-MORL: Multi-Objective Reinforcement Learning through Efficient Discovery of Pareto Front [9.04360155372014]
Constrained MORL is a seamless bridge between constrained policy optimization and MORL.
Our algorithm achieves more consistent and superior performances in terms of hypervolume, expected utility, and sparsity on both discrete and continuous control tasks.
arXiv Detail & Related papers (2024-10-03T06:13:56Z) - Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA)
Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers.
arXiv Detail & Related papers (2024-09-02T12:55:27Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Addressing the issue of stochastic environments and local
decision-making in multi-objective reinforcement learning [0.0]
Multi-objective reinforcement learning (MORL) is a relatively new field which builds on conventional Reinforcement Learning (RL)
This thesis focuses on what factors influence the frequency with which value-based MORL Q-learning algorithms learn the optimal policy for an environment.
arXiv Detail & Related papers (2022-11-16T04:56:42Z) - Supervised Contrastive Learning as Multi-Objective Optimization for
Fine-Tuning Large Pre-trained Language Models [3.759936323189417]
Supervised Contrastive Learning (SCL) has been shown to achieve excellent performance in most classification tasks.
In this work, we formulate the SCL problem as a Multi-Objective Optimization problem for the fine-tuning phase of RoBERTa language model.
arXiv Detail & Related papers (2022-09-28T15:13:58Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.