T-MAE: Temporal Masked Autoencoders for Point Cloud Representation Learning
- URL: http://arxiv.org/abs/2312.10217v3
- Date: Mon, 22 Jul 2024 08:30:53 GMT
- Title: T-MAE: Temporal Masked Autoencoders for Point Cloud Representation Learning
- Authors: Weijie Wei, Fatemeh Karimi Nejadasl, Theo Gevers, Martin R. Oswald,
- Abstract summary: We propose an effective pre-training strategy, namely Temporal Masked Auto-Encoders (T-MAE)
T-MAE takes as input temporally adjacent frames and learns temporal dependency.
Our T-MAE pre-training strategy alleviates its demand for annotated data.
- Score: 22.002220932086693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The scarcity of annotated data in LiDAR point cloud understanding hinders effective representation learning. Consequently, scholars have been actively investigating efficacious self-supervised pre-training paradigms. Nevertheless, temporal information, which is inherent in the LiDAR point cloud sequence, is consistently disregarded. To better utilize this property, we propose an effective pre-training strategy, namely Temporal Masked Auto-Encoders (T-MAE), which takes as input temporally adjacent frames and learns temporal dependency. A SiamWCA backbone, containing a Siamese encoder and a windowed cross-attention (WCA) module, is established for the two-frame input. Considering that the movement of an ego-vehicle alters the view of the same instance, temporal modeling also serves as a robust and natural data augmentation, enhancing the comprehension of target objects. SiamWCA is a powerful architecture but heavily relies on annotated data. Our T-MAE pre-training strategy alleviates its demand for annotated data. Comprehensive experiments demonstrate that T-MAE achieves the best performance on both Waymo and ONCE datasets among competitive self-supervised approaches. Codes will be released at https://github.com/codename1995/T-MAE
Related papers
- Diffusion Auto-regressive Transformer for Effective Self-supervised Time Series Forecasting [47.58016750718323]
We propose a novel generative self-supervised method called TimeDART.
TimeDART captures both the global sequence dependence and local detail features within time series data.
Our code is publicly available at https://github.com/Melmaphother/TimeDART.
arXiv Detail & Related papers (2024-10-08T06:08:33Z) - TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation [80.13343299606146]
We propose a Temporal LiDAR Aggregation and Distillation (TLAD) algorithm, which leverages historical priors to assign different aggregation steps for different classes.
To make full use of temporal images, we design a Temporal Image Aggregation and Fusion (TIAF) module, which can greatly expand the camera FOV.
We also develop a Static-Moving Switch Augmentation (SMSA) algorithm, which utilizes sufficient temporal information to enable objects to switch their motion states freely.
arXiv Detail & Related papers (2024-07-13T03:00:16Z) - Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning [116.75939193785143]
Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones.
In 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant.
arXiv Detail & Related papers (2024-07-08T12:28:56Z) - Disentangling Spatial and Temporal Learning for Efficient Image-to-Video
Transfer Learning [59.26623999209235]
We present DiST, which disentangles the learning of spatial and temporal aspects of videos.
The disentangled learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters.
Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps.
arXiv Detail & Related papers (2023-09-14T17:58:33Z) - Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
We propose TempO, a temporal ordering pretext task for pre-training region-level feature representations for perception tasks.
We embed each frame by an unordered set of proposal feature vectors, a representation that is natural for object detection or tracking systems.
Extensive evaluations on the BDD100K, nuImages, and MOT17 datasets show that our TempO pre-training approach outperforms single-frame self-supervised learning methods.
arXiv Detail & Related papers (2023-02-17T18:18:27Z) - OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds [6.661881950861012]
We propose a novel one-stream network with the strength of the instance-level encoding, which avoids the correlation operations occurring in previous Siamese network.
The proposed method has achieved considerable performance not only for class-specific tracking but also for class-agnostic tracking with less computation and higher efficiency.
arXiv Detail & Related papers (2022-10-16T12:31:59Z) - MAPLE: Masked Pseudo-Labeling autoEncoder for Semi-supervised Point
Cloud Action Recognition [160.49403075559158]
We propose a Masked Pseudo-Labeling autoEncoder (textbfMAPLE) framework for point cloud action recognition.
In particular, we design a novel and efficient textbfDecoupled textbfspatial-textbftemporal TranstextbfFormer (textbfDestFormer) as the backbone of MAPLE.
MAPLE achieves superior results on three public benchmarks and outperforms the state-of-the-art method by 8.08% accuracy on the MSR-Action3
arXiv Detail & Related papers (2022-09-01T12:32:40Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
We present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE)
To leverage temporal information, we include a temporal embedding along with independently masking image patches across time.
arXiv Detail & Related papers (2022-07-17T01:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.