Primitive Quantum Gates for an $SU(2)$ Discrete Subgroup: Binary
Octahedral
- URL: http://arxiv.org/abs/2312.10285v1
- Date: Sat, 16 Dec 2023 01:46:01 GMT
- Title: Primitive Quantum Gates for an $SU(2)$ Discrete Subgroup: Binary
Octahedral
- Authors: Erik J. Gustafson, Henry Lamm, Felicity Lovelace
- Abstract summary: We construct a primitive gate set for the digital quantum simulation of the 48-element binary octahedral ($mathbbBO$) group.
This nonabelian discrete group better approximates $SU(2)$ lattice gauge theory than previous work on the binary tetrahedral group.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We construct a primitive gate set for the digital quantum simulation of the
48-element binary octahedral ($\mathbb{BO}$) group. This nonabelian discrete
group better approximates $SU(2)$ lattice gauge theory than previous work on
the binary tetrahedral group at the cost of one additional qubit -- for a total
of six -- per gauge link. The necessary primitives are the inversion gate, the
group multiplication gate, the trace gate, and the $\mathbb{BO}$ Fourier
transform.
Related papers
- A Novel Finite Fractional Fourier Transform and its Quantum Circuit Implementation on Qudits [0.0]
We present a new number theoretic definition of discrete fractional Fourier transform (DFrFT)
The DFrFT is defined as the $N times N$ dimensional unitary representation of the generator of the arithmetic rotational group $SO_2[mathbbZ_pn]$.
arXiv Detail & Related papers (2024-09-09T16:15:53Z) - Scaling of symmetry-restricted quantum circuits [42.803917477133346]
In this work, we investigate the properties of $mathcalMSU(2N)$, $mathcalM$-invariant subspaces of the special unitary Lie group $SU(2N)$.
arXiv Detail & Related papers (2024-06-14T12:12:15Z) - Block Encodings of Discrete Subgroups on Quantum Computer [23.493000556496376]
We introduce a block encoding method for mapping discrete subgroups to qubits on a quantum computer.
We detail the construction of primitive gates -- the inversion gate, the group multiplication gate, the trace gate, and the group Fourier gate.
The inversion gates for $mathbbBT$ and $mathbbBI$ are benchmarked on the $textttwang$ quantum computer with estimated fidelities of $40+5_-4%$ and $4+5_-3%$ respectively.
arXiv Detail & Related papers (2024-05-21T16:00:04Z) - Primitive Quantum Gates for an SU(3) Discrete Subgroup: $Σ(36\times3)$ [1.1545092788508224]
We construct the primitive gate set for the digital quantum simulation of the 108-element $Sigma(36times3)$ group.
This is the first time a nonabelian crystal-like subgroup of $SU(3)$ has been constructed for quantum simulation.
arXiv Detail & Related papers (2024-04-30T15:08:59Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT [0.0]
We construct a primitive gate set for the digital quantum simulation of the binary tetrahedral ($mathbbBT$) group on two quantum architectures.
This nonabelian discrete group serves as a crude approximation to $SU(2)$ lattice gauge theory while requiring five qubits or one quicosotetrit per gauge link.
We experimentally benchmark the inversion and trace gates on ibm nairobi, with estimated fidelities between $14-55%$, depending on the input state.
arXiv Detail & Related papers (2022-08-25T19:13:43Z) - Algebraic Aspects of Boundaries in the Kitaev Quantum Double Model [77.34726150561087]
We provide a systematic treatment of boundaries based on subgroups $Ksubseteq G$ with the Kitaev quantum double $D(G)$ model in the bulk.
The boundary sites are representations of a $*$-subalgebra $Xisubseteq D(G)$ and we explicate its structure as a strong $*$-quasi-Hopf algebra.
As an application of our treatment, we study patches with boundaries based on $K=G$ horizontally and $K=e$ vertically and show how these could be used in a quantum computer
arXiv Detail & Related papers (2022-08-12T15:05:07Z) - Quantum teleportation in the commuting operator framework [63.69764116066747]
We present unbiased teleportation schemes for relative commutants $N'cap M$ of a large class of finite-index inclusions $Nsubseteq M$ of tracial von Neumann algebras.
We show that any tight teleportation scheme for $N$ necessarily arises from an orthonormal unitary Pimsner-Popa basis of $M_n(mathbbC)$ over $N'$.
arXiv Detail & Related papers (2022-08-02T00:20:46Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Primitive Quantum Gates for Dihedral Gauge Theories [0.0]
We describe the simulation of dihedral gauge theories on digital quantum computers.
The nonabelian discrete gauge group $D_N$ serves as an approximation to $U(1)timesbbZ$ lattice gauge theory.
arXiv Detail & Related papers (2021-08-30T15:16:47Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.