Inductive Link Prediction in Knowledge Graphs using Path-based Neural Networks
- URL: http://arxiv.org/abs/2312.10293v2
- Date: Mon, 8 Jul 2024 19:01:47 GMT
- Title: Inductive Link Prediction in Knowledge Graphs using Path-based Neural Networks
- Authors: Canlin Zhang, Xiuwen Liu,
- Abstract summary: SiaILP is a path-based model for inductive link prediction using siamese neural networks.
Our model achieves several new state-of-the-art performances in link prediction tasks using inductive versions of WN18RR, FB15k-237, and Nell995.
- Score: 1.3735277588793995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction is a crucial research area in knowledge graphs, with many downstream applications. In many real-world scenarios, inductive link prediction is required, where predictions have to be made among unseen entities. Embedding-based models usually need fine-tuning on new entity embeddings, and hence are difficult to be directly applied to inductive link prediction tasks. Logical rules captured by rule-based models can be directly applied to new entities with the same graph typologies, but the captured rules are discrete and usually lack generosity. Graph neural networks (GNNs) can generalize topological information to new graphs taking advantage of deep neural networks, which however may still need fine-tuning on new entity embeddings. In this paper, we propose SiaILP, a path-based model for inductive link prediction using siamese neural networks. Our model only depends on relation and path embeddings, which can be generalized to new entities without fine-tuning. Experiments show that our model achieves several new state-of-the-art performances in link prediction tasks using inductive versions of WN18RR, FB15k-237, and Nell995. Our code is available at \url{https://github.com/canlinzhang/SiaILP}.
Related papers
- Towards Few-shot Inductive Link Prediction on Knowledge Graphs: A
Relational Anonymous Walk-guided Neural Process Approach [49.00753238429618]
Few-shot inductive link prediction on knowledge graphs aims to predict missing links for unseen entities with few-shot links observed.
Recent inductive methods utilize the sub-graphs around unseen entities to obtain the semantics and predict links inductively.
We propose a novel relational anonymous walk-guided neural process for few-shot inductive link prediction on knowledge graphs, denoted as RawNP.
arXiv Detail & Related papers (2023-06-26T12:02:32Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - How Neural Processes Improve Graph Link Prediction [35.652234989200956]
We propose a meta-learning approach with graph neural networks for link prediction: Neural Processes for Graph Neural Networks (NPGNN)
NPGNN can perform both transductive and inductive learning tasks and adapt to patterns in a large new graph after training with a small subgraph.
arXiv Detail & Related papers (2021-09-30T07:35:13Z) - The World as a Graph: Improving El Ni\~no Forecasts with Graph Neural
Networks [0.00916150060695978]
We propose the first application of graph neural networks to seasonal forecasting.
Our model, graphino, outperforms state-of-the-art deep learning-based models for forecasts up to six months ahead.
arXiv Detail & Related papers (2021-04-11T19:55:55Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Learning Reasoning Strategies in End-to-End Differentiable Proving [50.9791149533921]
Conditional Theorem Provers learn optimal rule selection strategy via gradient-based optimisation.
We show that Conditional Theorem Provers are scalable and yield state-of-the-art results on the CLUTRR dataset.
arXiv Detail & Related papers (2020-07-13T16:22:14Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.