Continuous Prompt Generation from Linear Combination of Discrete Prompt
Embeddings
- URL: http://arxiv.org/abs/2312.10323v2
- Date: Wed, 14 Feb 2024 18:57:20 GMT
- Title: Continuous Prompt Generation from Linear Combination of Discrete Prompt
Embeddings
- Authors: Pascal Passigan, Kidus Yohannes, Joshua Pereira
- Abstract summary: We present a novel method of constructing continuous prompts via discrete prompt embeddings and evaluate improvements to continuous prompt interpretability and inference accuracy.
For a set of manually designed discrete prompts $mathcalD$, which we tokenize and embed each into tensor form, we train a model to predict the weights such that the linear combinations of those prompts correspond to higher performance on natural language understanding tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The wayward quality of continuous prompts stresses the importance of their
interpretability as unexpected and unpredictable behaviors appear following
training, especially in the context of large language models automating
people-sensitive tasks such as resume screening. In this paper we present a
novel method of constructing continuous prompts via discrete prompt embeddings
and evaluate improvements to continuous prompt interpretability and inference
accuracy. For a set of manually designed discrete prompts $\mathcal{D}$, which
we tokenize and embed each into tensor form, we train a model to predict the
weights such that the linear combinations of those prompts correspond to higher
performance on natural language understanding tasks.
Related papers
- Eliciting Textual Descriptions from Representations of Continuous Prompts [11.489611613744724]
We propose a new approach to interpret continuous prompts that elicits textual descriptions from their representations during model inference.
We show our method often yields accurate task descriptions which become more faithful as task performance increases.
InSPEcT can be leveraged to debug unwanted properties in continuous prompts and inform developers on ways to mitigate them.
arXiv Detail & Related papers (2024-10-15T14:46:11Z) - Consistent Prompting for Rehearsal-Free Continual Learning [5.166083532861163]
Continual learning empowers models to adapt autonomously to the ever-changing environment or data streams without forgetting old knowledge.
Existing prompt-based methods are inconsistent between training and testing, limiting their effectiveness.
We propose a novel prompt-based method, Consistent Prompting (CPrompt), for more aligned training and testing.
arXiv Detail & Related papers (2024-03-13T14:24:09Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
Large language models (LLMs) are capable of performing conditional sequence generation tasks, such as translation or summarization.
We propose enhancing the instruction-following capability of LLMs by shifting the position of task instructions after the input sentences.
arXiv Detail & Related papers (2023-08-23T12:36:57Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - On Conditional and Compositional Language Model Differentiable Prompting [75.76546041094436]
Prompts have been shown to be an effective method to adapt a frozen Pretrained Language Model (PLM) to perform well on downstream tasks.
We propose a new model, Prompt Production System (PRopS), which learns to transform task instructions or input metadata, into continuous prompts.
arXiv Detail & Related papers (2023-07-04T02:47:42Z) - Evaluating the Robustness of Discrete Prompts [27.919548466481583]
We conduct a systematic study of the robustness of discrete prompts.
We measure their performance in two Natural Language Inference (NLI) datasets.
Our results show that although the discrete prompt-based method remains relatively robust against perturbations to NLI inputs, they are highly sensitive to other types of perturbations such as shuffling and deletion of prompt tokens.
arXiv Detail & Related papers (2023-02-11T07:01:53Z) - Generative Prompt Tuning for Relation Classification [21.027631157115135]
We propose a novel generative prompt tuning method to reformulate relation classification as an infilling problem.
In addition, we design entity-guided decoding and discriminative relation scoring to generate and align relations effectively and efficiently during inference.
arXiv Detail & Related papers (2022-10-22T12:40:23Z) - PROMPT WAYWARDNESS: The Curious Case of Discretized Interpretation of
Continuous Prompts [99.03864962014431]
Fine-tuning continuous prompts for target tasks has emerged as a compact alternative to full model fine-tuning.
In practice, we observe a "wayward" behavior between the task solved by continuous prompts and their nearest neighbor.
arXiv Detail & Related papers (2021-12-15T18:55:05Z) - Probing as Quantifying the Inductive Bias of Pre-trained Representations [99.93552997506438]
We present a novel framework for probing where the goal is to evaluate the inductive bias of representations for a particular task.
We apply our framework to a series of token-, arc-, and sentence-level tasks.
arXiv Detail & Related papers (2021-10-15T22:01:16Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
We propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks.
We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model.
arXiv Detail & Related papers (2020-10-10T14:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.