Catastrophic Forgetting in Deep Learning: A Comprehensive Taxonomy
- URL: http://arxiv.org/abs/2312.10549v1
- Date: Sat, 16 Dec 2023 22:24:54 GMT
- Title: Catastrophic Forgetting in Deep Learning: A Comprehensive Taxonomy
- Authors: Everton L. Aleixo and Juan G. Colonna and Marco Cristo and Everlandio
Fernandes
- Abstract summary: Catastrophic Forgetting (CF) can lead to a significant loss of accuracy in Deep Learning models.
CF was first observed by McCloskey and Cohen in 1989 and remains an active research topic.
This article surveys recent studies that tackle CF in modern Deep Learning models that use gradient descent as their learning algorithm.
- Score: 0.2796197251957244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning models have achieved remarkable performance in tasks such as
image classification or generation, often surpassing human accuracy. However,
they can struggle to learn new tasks and update their knowledge without access
to previous data, leading to a significant loss of accuracy known as
Catastrophic Forgetting (CF). This phenomenon was first observed by McCloskey
and Cohen in 1989 and remains an active research topic. Incremental learning
without forgetting is widely recognized as a crucial aspect in building better
AI systems, as it allows models to adapt to new tasks without losing the
ability to perform previously learned ones. This article surveys recent studies
that tackle CF in modern Deep Learning models that use gradient descent as
their learning algorithm. Although several solutions have been proposed, a
definitive solution or consensus on assessing CF is yet to be established. The
article provides a comprehensive review of recent solutions, proposes a
taxonomy to organize them, and identifies research gaps in this area.
Related papers
- Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - A Survey on Few-Shot Class-Incremental Learning [11.68962265057818]
Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks.
This paper provides a comprehensive survey on FSCIL.
FSCIL has achieved impressive achievements in various fields of computer vision.
arXiv Detail & Related papers (2023-04-17T10:15:08Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD) mimics the humans' ability of learning to learn.
FSOD intelligently transfers the learned generic object knowledge from the common heavy-tailed, to the novel long-tailed object classes.
We give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols.
arXiv Detail & Related papers (2022-03-27T04:11:28Z) - Deep Learning meets Liveness Detection: Recent Advancements and
Challenges [3.2011056280404637]
We present a comprehensive survey on the literature related to deep-feature-based FAS methods since 2017.
We cover predominant public datasets for FAS in chronological order, their evolutional progress, and the evaluation criteria.
arXiv Detail & Related papers (2021-12-29T19:24:58Z) - Deep Long-Tailed Learning: A Survey [163.16874896812885]
Deep long-tailed learning aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution.
Long-tailed class imbalance is a common problem in practical visual recognition tasks.
This paper provides a comprehensive survey on recent advances in deep long-tailed learning.
arXiv Detail & Related papers (2021-10-09T15:25:22Z) - The Role of Bio-Inspired Modularity in General Learning [0.0]
One goal of general intelligence is to learn novel information without overwriting prior learning.
bootstrapping previous knowledge may allow for faster learning of a novel task.
modularity may offer a solution to weight-update learning methods that adheres to the learning without catastrophic forgetting and bootstrapping constraints.
arXiv Detail & Related papers (2021-09-23T18:45:34Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
We study the issue of catastrophic forgetting in class-incremental learning (Class-IL)
In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification.
We propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem.
arXiv Detail & Related papers (2020-06-10T15:15:27Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
We focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem.
FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones.
We represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes.
arXiv Detail & Related papers (2020-04-23T03:38:33Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.