Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting
- URL: http://arxiv.org/abs/2312.10588v1
- Date: Sun, 17 Dec 2023 02:31:20 GMT
- Title: Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting
- Authors: Dawei Yang, Ning He, Xing Hu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe
Jiang
- Abstract summary: We propose a coarse & fine weight splitting (CFWS) method to reduce quantization error of weight.
We develop an improved KL metric to determine optimal quantization scales for activation.
For example, the quantized RepVGG-A1 model exhibits a mere 0.3% accuracy loss.
- Score: 13.270381125055275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although neural networks have made remarkable advancements in various
applications, they require substantial computational and memory resources.
Network quantization is a powerful technique to compress neural networks,
allowing for more efficient and scalable AI deployments. Recently,
Re-parameterization has emerged as a promising technique to enhance model
performance while simultaneously alleviating the computational burden in
various computer vision tasks. However, the accuracy drops significantly when
applying quantization on the re-parameterized networks. We identify that the
primary challenge arises from the large variation in weight distribution across
the original branches. To address this issue, we propose a coarse & fine weight
splitting (CFWS) method to reduce quantization error of weight, and develop an
improved KL metric to determine optimal quantization scales for activation. To
the best of our knowledge, our approach is the first work that enables
post-training quantization applicable on re-parameterized networks. For
example, the quantized RepVGG-A1 model exhibits a mere 0.3% accuracy loss. The
code is in https://github.com/NeonHo/Coarse-Fine-Weight-Split.git
Related papers
- Improving Convergence for Quantum Variational Classifiers using Weight
Re-Mapping [60.086820254217336]
In recent years, quantum machine learning has seen a substantial increase in the use of variational quantum circuits (VQCs)
We introduce weight re-mapping for VQCs, to unambiguously map the weights to an interval of length $2pi$.
We demonstrate that weight re-mapping increased test accuracy for the Wine dataset by $10%$ over using unmodified weights.
arXiv Detail & Related papers (2022-12-22T13:23:19Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
We study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one.
We can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model.
arXiv Detail & Related papers (2022-12-10T15:57:38Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
Quantization aims to transform high-precision weights and activations of a given neural network into low-precision weights/activations for reduced memory usage and computation.
Extreme quantization (1-bit weight/1-bit activations) of compactly-designed backbone architectures results in severe performance degeneration.
This paper proposes a novel Quantization-Aware Training (QAT) method that can effectively alleviate performance degeneration.
arXiv Detail & Related papers (2022-07-04T13:25:49Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
Quantization of deep neural networks is a promising approach that reduces the inference cost.
We propose a new framework to learn the quantization intervals (discrete values) using the knowledge of the network's weight and activation distributions.
Our scheme simultaneously prunes the network's parameters and allows us to flexibly adjust the pruning ratio during the quantization process.
arXiv Detail & Related papers (2022-02-24T23:33:47Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - ECQ$^{\text{x}}$: Explainability-Driven Quantization for Low-Bit and
Sparse DNNs [13.446502051609036]
We develop and describe a novel quantization paradigm for deep neural networks (DNNs)
Our method leverages concepts of explainable AI (XAI) and concepts of information theory.
The ultimate goal is to preserve the most relevant weights in quantization clusters of highest information content.
arXiv Detail & Related papers (2021-09-09T12:57:06Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - Quantized Proximal Averaging Network for Analysis Sparse Coding [23.080395291046408]
We unfold an iterative algorithm into a trainable network that facilitates learning sparsity prior to quantization.
We demonstrate applications to compressed image recovery and magnetic resonance image reconstruction.
arXiv Detail & Related papers (2021-05-13T12:05:35Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
This paper proposes two novel techniques to train deep convolutional neural networks with low bit-width weights and activations.
First, to obtain low bit-width weights, most existing methods obtain the quantized weights by performing quantization on the full-precision network weights.
Second, to obtain low bit-width activations, existing works consider all channels equally.
arXiv Detail & Related papers (2020-12-26T15:21:18Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.