Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis
- URL: http://arxiv.org/abs/2312.10826v1
- Date: Sun, 17 Dec 2023 21:50:02 GMT
- Title: Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis
- Authors: Conrad Borchers, Yeyu Wang, Shamya Karumbaiah, Muhammad Ashiq, David
Williamson Shaffer, Vincent Aleven
- Abstract summary: The present study uses transmodal ordered network analysis to understand effective teacher practices in relationship to traditional metrics of in-system learning in a mathematics classroom working with AI tutors.
Comparing teacher practices by student learning rates, we find that students with low learning rates exhibited more hint use after monitoring.
Students with low learning rates showed learning behavior similar to their high learning rate peers, achieving repeated correct attempts in the tutor.
- Score: 0.9187505256430948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning analytics research increasingly studies classroom learning with
AI-based systems through rich contextual data from outside these systems,
especially student-teacher interactions. One key challenge in leveraging such
data is generating meaningful insights into effective teacher practices.
Quantitative ethnography bears the potential to close this gap by combining
multimodal data streams into networks of co-occurring behavior that drive
insight into favorable learning conditions. The present study uses transmodal
ordered network analysis to understand effective teacher practices in
relationship to traditional metrics of in-system learning in a mathematics
classroom working with AI tutors. Incorporating teacher practices captured by
position tracking and human observation codes into modeling significantly
improved the inference of how efficiently students improved in the AI tutor
beyond a model with tutor log data features only. Comparing teacher practices
by student learning rates, we find that students with low learning rates
exhibited more hint use after monitoring. However, after an extended visit,
students with low learning rates showed learning behavior similar to their high
learning rate peers, achieving repeated correct attempts in the tutor.
Observation notes suggest conceptual and procedural support differences can
help explain visit effectiveness. Taken together, offering early conceptual
support to students with low learning rates could make classroom practice with
AI tutors more effective. This study advances the scientific understanding of
effective teacher practice in classrooms learning with AI tutors and
methodologies to make such practices visible.
Related papers
- YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
We propose a data driven approach that makes use of Machine Learning techniques to generate a classifier called credit score.
The proposal to use credit score as progress indicator is well suited to be used in a Learning Management System.
arXiv Detail & Related papers (2022-11-02T08:24:08Z) - Learning Data Teaching Strategies Via Knowledge Tracing [5.648636668261282]
We propose a novel method, called Knowledge Augmented Data Teaching (KADT), to optimize a data teaching strategy for a student model.
The KADT method incorporates a knowledge tracing model to dynamically capture the knowledge progress of a student model in terms of latent learning concepts.
We have evaluated the performance of the KADT method on four different machine learning tasks including knowledge tracing, sentiment analysis, movie recommendation, and image classification.
arXiv Detail & Related papers (2021-11-13T10:10:48Z) - Iterative Teacher-Aware Learning [136.05341445369265]
In human pedagogy, teachers and students can interact adaptively to maximize communication efficiency.
We propose a gradient optimization based teacher-aware learner who can incorporate teacher's cooperative intention into the likelihood function.
arXiv Detail & Related papers (2021-10-01T00:27:47Z) - RLTutor: Reinforcement Learning Based Adaptive Tutoring System by
Modeling Virtual Student with Fewer Interactions [10.34673089426247]
We propose a framework for optimizing teaching strategies by constructing a virtual model of the student.
Our results can serve as a buffer between theoretical instructional optimization and practical applications in e-learning systems.
arXiv Detail & Related papers (2021-07-31T15:42:03Z) - Student Network Learning via Evolutionary Knowledge Distillation [22.030934154498205]
We propose an evolutionary knowledge distillation approach to improve the transfer effectiveness of teacher knowledge.
Instead of a fixed pre-trained teacher, an evolutionary teacher is learned online and consistently transfers intermediate knowledge to supervise student network learning on-the-fly.
In this way, the student can simultaneously obtain rich internal knowledge and capture its growth process, leading to effective student network learning.
arXiv Detail & Related papers (2021-03-23T02:07:15Z) - Learning Student-Friendly Teacher Networks for Knowledge Distillation [50.11640959363315]
We propose a novel knowledge distillation approach to facilitate the transfer of dark knowledge from a teacher to a student.
Contrary to most of the existing methods that rely on effective training of student models given pretrained teachers, we aim to learn the teacher models that are friendly to students.
arXiv Detail & Related papers (2021-02-12T07:00:17Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
We propose Point Adversarial Self Mining (PASM) to improve the recognition accuracy in facial expression recognition.
PASM uses a point adversarial attack method and a trained teacher network to locate the most informative position related to the target task.
The adaptive learning materials generation and teacher/student update can be conducted more than one time, improving the network capability iteratively.
arXiv Detail & Related papers (2020-08-26T06:39:24Z) - Interactive Knowledge Distillation [79.12866404907506]
We propose an InterActive Knowledge Distillation scheme to leverage the interactive teaching strategy for efficient knowledge distillation.
In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation.
Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods.
arXiv Detail & Related papers (2020-07-03T03:22:04Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.