Advancing Image Retrieval with Few-Shot Learning and Relevance Feedback
- URL: http://arxiv.org/abs/2312.11078v1
- Date: Mon, 18 Dec 2023 10:20:28 GMT
- Title: Advancing Image Retrieval with Few-Shot Learning and Relevance Feedback
- Authors: Boaz Lerner, Nir Darshan and Rami Ben-Ari
- Abstract summary: Image Retrieval with Relevance Feedback (IRRF) involves iterative human interaction during the retrieval process.
We propose a new scheme based on a hyper-network, that is tailored to the task and facilitates swift adjustment to user feedback.
We show that our method can attain SoTA results in few-shot one-class classification and reach comparable results in binary classification task of few-shot open-set recognition.
- Score: 5.770351255180495
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With such a massive growth in the number of images stored, efficient search
in a database has become a crucial endeavor managed by image retrieval systems.
Image Retrieval with Relevance Feedback (IRRF) involves iterative human
interaction during the retrieval process, yielding more meaningful outcomes.
This process can be generally cast as a binary classification problem with only
{\it few} labeled samples derived from user feedback. The IRRF task frames a
unique few-shot learning characteristics including binary classification of
imbalanced and asymmetric classes, all in an open-set regime. In this paper, we
study this task through the lens of few-shot learning methods. We propose a new
scheme based on a hyper-network, that is tailored to the task and facilitates
swift adjustment to user feedback. Our approach's efficacy is validated through
comprehensive evaluations on multiple benchmarks and two supplementary tasks,
supported by theoretical analysis. We demonstrate the advantage of our model
over strong baselines on 4 different datasets in IRRF, addressing also
retrieval of images with multiple objects. Furthermore, we show that our method
can attain SoTA results in few-shot one-class classification and reach
comparable results in binary classification task of few-shot open-set
recognition.
Related papers
- Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
This paper studies the problem of zero-shot sketch-based image retrieval (ZS-SBIR)
It aims to use sketches from unseen categories as queries to match the images of the same category.
We propose a novel Symmetrical Bidirectional Knowledge Alignment for zero-shot sketch-based image retrieval (SBKA)
arXiv Detail & Related papers (2023-12-16T04:50:34Z) - RAFIC: Retrieval-Augmented Few-shot Image Classification [0.0]
Few-shot image classification is the task of classifying unseen images to one of N mutually exclusive classes.
We have developed a method for augmenting the set of K with an addition set of A retrieved images.
We demonstrate that RAFIC markedly improves performance of few-shot image classification across two challenging datasets.
arXiv Detail & Related papers (2023-12-11T22:28:51Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
In this work, we propose a classifier ensemble based on the transferable learning capabilities of the CLIP neural network architecture.
Our experiments, based on image classification tasks according to the labels of the Places dataset, are performed by first considering only the visual part.
Considering the associated texts to the images can help to improve the accuracy depending on the goal.
arXiv Detail & Related papers (2021-07-08T10:54:59Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
We show that inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes.
Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations.
Our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24%.
arXiv Detail & Related papers (2021-05-25T12:22:11Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
Deep networks can learn to accurately recognize objects of a category by training on a large number of images.
A meta-learning challenge known as a low-shot image recognition task comes when only a few images with annotations are available for learning a recognition model for one category.
Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve this problem.
Experiments for few-shot learning on two standard datasets, emphminiImageNet and Omniglot, have confirmed the effectiveness of our method.
arXiv Detail & Related papers (2021-01-13T11:37:28Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Tasks Integrated Networks: Joint Detection and Retrieval for Image
Search [99.49021025124405]
In many real-world searching scenarios (e.g., video surveillance), the objects are seldom accurately detected or annotated.
We first introduce an end-to-end Integrated Net (I-Net), which has three merits.
We further propose an improved I-Net, called DC-I-Net, which makes two new contributions.
arXiv Detail & Related papers (2020-09-03T03:57:50Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - CBIR using features derived by Deep Learning [0.0]
In a Content Based Image Retrieval (CBIR) System, the task is to retrieve similar images from a large database given a query image.
We propose to use features derived from pre-trained network models from a deep-learning convolution network trained for a large image classification problem.
arXiv Detail & Related papers (2020-02-13T21:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.