A Red Teaming Framework for Securing AI in Maritime Autonomous Systems
- URL: http://arxiv.org/abs/2312.11500v1
- Date: Fri, 8 Dec 2023 14:59:07 GMT
- Title: A Red Teaming Framework for Securing AI in Maritime Autonomous Systems
- Authors: Mathew J. Walter, Aaron Barrett and Kimberly Tam
- Abstract summary: We propose one of the first red team frameworks for evaluating the AI security of maritime autonomous systems.
This framework is a multi-part checklist, which can be tailored to different systems and requirements.
We demonstrate this framework to be highly effective for a red team to use to uncover numerous vulnerabilities within a real-world maritime autonomous systems AI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Artificial intelligence (AI) is being ubiquitously adopted to automate
processes in science and industry. However, due to its often intricate and
opaque nature, AI has been shown to possess inherent vulnerabilities which can
be maliciously exploited with adversarial AI, potentially putting AI users and
developers at both cyber and physical risk. In addition, there is insufficient
comprehension of the real-world effects of adversarial AI and an inadequacy of
AI security examinations; therefore, the growing threat landscape is unknown
for many AI solutions. To mitigate this issue, we propose one of the first red
team frameworks for evaluating the AI security of maritime autonomous systems.
The framework provides operators with a proactive (secure by design) and
reactive (post-deployment evaluation) response to securing AI technology today
and in the future. This framework is a multi-part checklist, which can be
tailored to different systems and requirements. We demonstrate this framework
to be highly effective for a red team to use to uncover numerous
vulnerabilities within a real-world maritime autonomous systems AI, ranging
from poisoning to adversarial patch attacks. The lessons learned from
systematic AI red teaming can help prevent MAS-related catastrophic events in a
world with increasing uptake and reliance on mission-critical AI.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
This paper explores the integration of Artificial Intelligence (AI) into offensive cybersecurity.
It develops an autonomous AI agent, ReaperAI, designed to simulate and execute cyberattacks.
ReaperAI demonstrates the potential to identify, exploit, and analyze security vulnerabilities autonomously.
arXiv Detail & Related papers (2024-05-09T18:15:12Z) - Killer Apps: Low-Speed, Large-Scale AI Weapons [2.2899177316144943]
Artificial Intelligence (AI) and Machine Learning (ML) advancements present new challenges and opportunities in warfare and security.
This paper explores the concept of AI weapons, their deployment, detection, and potential countermeasures.
arXiv Detail & Related papers (2024-01-14T12:09:40Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Structured access to AI capabilities: an emerging paradigm for safe AI
deployment [0.0]
Instead of openly disseminating AI systems, developers facilitate controlled, arm's length interactions with their AI systems.
Aim is to prevent dangerous AI capabilities from being widely accessible, whilst preserving access to AI capabilities that can be used safely.
arXiv Detail & Related papers (2022-01-13T19:30:16Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
In recent years, most AI models are vulnerable to advanced and sophisticated hacking techniques.
This challenge has motivated concerted research efforts into adversarial AI.
We present a holistic cyber security review that demonstrates adversarial attacks against AI applications.
arXiv Detail & Related papers (2021-02-09T06:06:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.