Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models
- URL: http://arxiv.org/abs/2312.11720v2
- Date: Mon, 1 Jul 2024 13:49:45 GMT
- Title: Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models
- Authors: Paulo Pirozelli, Marcos M. José, Paulo de Tarso P. Filho, Anarosa A. F. Brandão, Fabio G. Cozman,
- Abstract summary: We investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules.
We show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets.
By cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability.
- Score: 0.13194391758295113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Logical reasoning is central to complex human activities, such as thinking, debating, and planning; it is also a central component of many AI systems as well. In this paper, we investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules. We ask whether those LMs can deduce theorems in propositional calculus and first-order logic; if their relative success in these problems reflects general logical capabilities; and which layers contribute the most to the task. First, we show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets. Next, by cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability, which suggests that they may have learned dataset-specific features, instead of a general capability. Finally, we conduct a layerwise probing experiment, which shows that the hypothesis classification task is mostly solved through higher layers.
Related papers
- Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models [10.106408289179463]
We propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context.
LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks.
arXiv Detail & Related papers (2024-09-26T04:59:45Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Can Language Models Pretend Solvers? Logic Code Simulation with LLMs [3.802945676202634]
Transformer-based large language models (LLMs) have demonstrated significant potential in addressing logic problems.
This study delves into a novel aspect, namely logic code simulation, which forces LLMs to emulate logical solvers in predicting the results of logical programs.
arXiv Detail & Related papers (2024-03-24T11:27:16Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Language Models can be Logical Solvers [99.40649402395725]
We introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers.
LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers.
arXiv Detail & Related papers (2023-11-10T16:23:50Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training.
We devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion.
The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM.
arXiv Detail & Related papers (2023-05-23T06:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.