Intrinsic Image Diffusion for Indoor Single-view Material Estimation
- URL: http://arxiv.org/abs/2312.12274v2
- Date: Thu, 21 Mar 2024 12:51:31 GMT
- Title: Intrinsic Image Diffusion for Indoor Single-view Material Estimation
- Authors: Peter Kocsis, Vincent Sitzmann, Matthias Nießner,
- Abstract summary: We present Intrinsic Image Diffusion, a generative model for appearance decomposition of indoor scenes.
Given a single input view, we sample multiple possible material explanations represented as albedo, roughness, and metallic maps.
Our method produces significantly sharper, more consistent, and more detailed materials, outperforming state-of-the-art methods by $1.5dB$ on PSNR and by $45%$ better FID score on albedo prediction.
- Score: 55.276815106443976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Intrinsic Image Diffusion, a generative model for appearance decomposition of indoor scenes. Given a single input view, we sample multiple possible material explanations represented as albedo, roughness, and metallic maps. Appearance decomposition poses a considerable challenge in computer vision due to the inherent ambiguity between lighting and material properties and the lack of real datasets. To address this issue, we advocate for a probabilistic formulation, where instead of attempting to directly predict the true material properties, we employ a conditional generative model to sample from the solution space. Furthermore, we show that utilizing the strong learned prior of recent diffusion models trained on large-scale real-world images can be adapted to material estimation and highly improves the generalization to real images. Our method produces significantly sharper, more consistent, and more detailed materials, outperforming state-of-the-art methods by $1.5dB$ on PSNR and by $45\%$ better FID score on albedo prediction. We demonstrate the effectiveness of our approach through experiments on both synthetic and real-world datasets.
Related papers
- DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition [13.341996441742374]
DiffPop is a framework that learns the scale and spatial relations among multiple objects and the corresponding scene image.
We develop a human-in-the-loop pipeline which exploits human labeling on the diffusion-generated composite images.
Our dataset and code will be released.
arXiv Detail & Related papers (2024-06-12T03:40:17Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
This paper aims to recover object materials from posed images captured under an unknown static lighting condition.
We learn the material prior with a generative model for regularizing the optimization process.
Experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery.
arXiv Detail & Related papers (2024-04-17T17:45:08Z) - Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers [120.49126407479717]
This paper explores text-to-image diffusion models for Zero-Shot Sketch-based Image Retrieval (ZS-SBIR)
We highlight a pivotal discovery: the capacity of text-to-image diffusion models to seamlessly bridge the gap between sketches and photos.
arXiv Detail & Related papers (2024-03-12T00:02:03Z) - Alchemist: Parametric Control of Material Properties with Diffusion
Models [51.63031820280475]
Our method capitalizes on the generative prior of text-to-image models known for photorealism.
We show the potential application of our model to material edited NeRFs.
arXiv Detail & Related papers (2023-12-05T18:58:26Z) - UMat: Uncertainty-Aware Single Image High Resolution Material Capture [2.416160525187799]
We propose a learning-based method to recover normals, specularity, and roughness from a single diffuse image of a material.
Our method is the first one to deal with the problem of modeling uncertainty in material digitization.
arXiv Detail & Related papers (2023-05-25T17:59:04Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Image Completion via Inference in Deep Generative Models [16.99337751292915]
We consider image completion from the perspective of amortized inference in an image generative model.
We demonstrate superior sample quality and diversity compared to prior art on the CIFAR-10 and FFHQ-256 datasets.
arXiv Detail & Related papers (2021-02-24T02:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.