RealCraft: Attention Control as A Tool for Zero-Shot Consistent Video Editing
- URL: http://arxiv.org/abs/2312.12635v4
- Date: Fri, 31 Jan 2025 15:34:24 GMT
- Title: RealCraft: Attention Control as A Tool for Zero-Shot Consistent Video Editing
- Authors: Shutong Jin, Ruiyu Wang, Florian T. Pokorny,
- Abstract summary: We propose RealCraft, an attention-control-based method for zero-shot real-world video editing.<n>By swapping cross-attention for new feature injection and relaxing spatial-temporal attention of the editing object, we achieve localized shape-wise edit.<n>We showcase the proposed zero-shot attention-control-based method across a range of videos, demonstrating shape-wise, time-consistent and parameter-free editing.
- Score: 9.215070588761282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even though large-scale text-to-image generative models show promising performance in synthesizing high-quality images, applying these models directly to image editing remains a significant challenge. This challenge is further amplified in video editing due to the additional dimension of time. This is especially the case for editing real-world videos as it necessitates maintaining a stable structural layout across frames while executing localized edits without disrupting the existing content. In this paper, we propose RealCraft, an attention-control-based method for zero-shot real-world video editing. By swapping cross-attention for new feature injection and relaxing spatial-temporal attention of the editing object, we achieve localized shape-wise edit along with enhanced temporal consistency. Our model directly uses Stable Diffusion and operates without the need for additional information. We showcase the proposed zero-shot attention-control-based method across a range of videos, demonstrating shape-wise, time-consistent and parameter-free editing in videos of up to 64 frames.
Related papers
- SketchVideo: Sketch-based Video Generation and Editing [51.99066098393491]
We aim to achieve sketch-based spatial and motion control for video generation and support fine-grained editing of real or synthetic videos.
Based on the DiT video generation model, we propose a memory-efficient control structure with sketch control blocks that predict residual features of skipped DiT blocks.
For sketch-based video editing, we design an additional video insertion module that maintains consistency between the newly edited content and the original video's spatial feature and dynamic motion.
arXiv Detail & Related papers (2025-03-30T02:44:09Z) - FastVideoEdit: Leveraging Consistency Models for Efficient Text-to-Video Editing [8.907836546058086]
Existing approaches relying on image generation models for video editing suffer from time-consuming one-shot fine-tuning, additional condition extraction, or DDIM inversion.
We propose FastVideoEdit, an efficient zero-shot video editing approach inspired by Consistency Models (CMs)
Our method enables direct mapping from source video to target video with strong preservation ability utilizing a special variance schedule.
arXiv Detail & Related papers (2024-03-10T17:12:01Z) - UniEdit: A Unified Tuning-Free Framework for Video Motion and Appearance Editing [28.140945021777878]
We present UniEdit, a tuning-free framework that supports both video motion and appearance editing.
To realize motion editing while preserving source video content, we introduce auxiliary motion-reference and reconstruction branches.
The obtained features are then injected into the main editing path via temporal and spatial self-attention layers.
arXiv Detail & Related papers (2024-02-20T17:52:12Z) - MagicStick: Controllable Video Editing via Control Handle Transformations [49.29608051543133]
MagicStick is a controllable video editing method that edits the video properties by utilizing the transformation on the extracted internal control signals.
We present experiments on numerous examples within our unified framework.
We also compare with shape-aware text-based editing and handcrafted motion video generation, demonstrating our superior temporal consistency and editing capability than previous works.
arXiv Detail & Related papers (2023-12-05T17:58:06Z) - MotionEditor: Editing Video Motion via Content-Aware Diffusion [96.825431998349]
MotionEditor is a diffusion model for video motion editing.
It incorporates a novel content-aware motion adapter into ControlNet to capture temporal motion correspondence.
arXiv Detail & Related papers (2023-11-30T18:59:33Z) - FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video
editing [65.60744699017202]
We introduce optical flow into the attention module in the diffusion model's U-Net to address the inconsistency issue for text-to-video editing.
Our method, FLATTEN, enforces the patches on the same flow path across different frames to attend to each other in the attention module.
Results on existing text-to-video editing benchmarks show that our proposed method achieves the new state-of-the-art performance.
arXiv Detail & Related papers (2023-10-09T17:59:53Z) - MagicEdit: High-Fidelity and Temporally Coherent Video Editing [70.55750617502696]
We present MagicEdit, a surprisingly simple yet effective solution to the text-guided video editing task.
We found that high-fidelity and temporally coherent video-to-video translation can be achieved by explicitly disentangling the learning of content, structure and motion signals during training.
arXiv Detail & Related papers (2023-08-28T17:56:22Z) - VidEdit: Zero-Shot and Spatially Aware Text-Driven Video Editing [18.24307442582304]
We introduce VidEdit, a novel method for zero-shot text-based video editing.
Our experiments show that VidEdit outperforms state-of-the-art methods on DAVIS dataset.
arXiv Detail & Related papers (2023-06-14T19:15:49Z) - Zero-Shot Video Editing Using Off-The-Shelf Image Diffusion Models [68.31777975873742]
Recent attempts at video editing require significant text-to-video data and computation resources for training.
We propose vid2vid-zero, a simple yet effective method for zero-shot video editing.
Experiments and analyses show promising results in editing attributes, subjects, places, etc., in real-world videos.
arXiv Detail & Related papers (2023-03-30T17:59:25Z) - FateZero: Fusing Attentions for Zero-shot Text-based Video Editing [104.27329655124299]
We propose FateZero, a zero-shot text-based editing method on real-world videos without per-prompt training or use-specific mask.
Our method is the first one to show the ability of zero-shot text-driven video style and local attribute editing from the trained text-to-image model.
arXiv Detail & Related papers (2023-03-16T17:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.