Sparse Mean Field Load Balancing in Large Localized Queueing Systems
- URL: http://arxiv.org/abs/2312.12973v2
- Date: Fri, 22 Mar 2024 15:00:47 GMT
- Title: Sparse Mean Field Load Balancing in Large Localized Queueing Systems
- Authors: Anam Tahir, Kai Cui, Heinz Koeppl,
- Abstract summary: We learn a near-optimal load balancing policy in sparsely connected queueing networks in a tractable manner.
By formulating a novel mean field control problem in the context of with bounded degree, we reduce the otherwise difficult multi-agent problem to a single-agent problem.
Empirically, the proposed methodology performs well on several realistic and scalable wireless network topologies.
- Score: 30.672653758080568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scalable load balancing algorithms are of great interest in cloud networks and data centers, necessitating the use of tractable techniques to compute optimal load balancing policies for good performance. However, most existing scalable techniques, especially asymptotically scaling methods based on mean field theory, have not been able to model large queueing networks with strong locality. Meanwhile, general multi-agent reinforcement learning techniques can be hard to scale and usually lack a theoretical foundation. In this work, we address this challenge by leveraging recent advances in sparse mean field theory to learn a near-optimal load balancing policy in sparsely connected queueing networks in a tractable manner, which may be preferable to global approaches in terms of wireless communication overhead. Importantly, we obtain a general load balancing framework for a large class of sparse bounded-degree wireless topologies. By formulating a novel mean field control problem in the context of graphs with bounded degree, we reduce the otherwise difficult multi-agent problem to a single-agent problem. Theoretically, the approach is justified by approximation guarantees. Empirically, the proposed methodology performs well on several realistic and scalable wireless network topologies as compared to a number of well-known load balancing heuristics and existing scalable multi-agent reinforcement learning methods.
Related papers
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Model-Free Learning of Optimal Deterministic Resource Allocations in
Wireless Systems via Action-Space Exploration [4.721069729610892]
We propose a technically grounded and scalable deterministic-dual gradient policy method for efficiently learning optimal parameterized resource allocation policies.
Our method not only efficiently exploits gradient availability of popular universal representations such as deep networks, but is also truly model-free, as it relies on consistent zeroth-order gradient approximations of associated random network services constructed via low-dimensional perturbations in action space.
arXiv Detail & Related papers (2021-08-23T18:26:16Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Graph Neural Networks for Scalable Radio Resource Management:
Architecture Design and Theoretical Analysis [31.372548374969387]
We propose to apply graph neural networks (GNNs) to solve large-scale radio resource management problems.
The proposed method is highly scalable and can solve the beamforming problem in an interference channel with $1000$ transceiver pairs within $6$ milliseconds on a single GPU.
arXiv Detail & Related papers (2020-07-15T11:43:32Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error.
Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence.
arXiv Detail & Related papers (2020-07-11T18:19:50Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.