Quantifying Bias in Text-to-Image Generative Models
- URL: http://arxiv.org/abs/2312.13053v1
- Date: Wed, 20 Dec 2023 14:26:54 GMT
- Title: Quantifying Bias in Text-to-Image Generative Models
- Authors: Jordan Vice, Naveed Akhtar, Richard Hartley, and Ajmal Mian
- Abstract summary: Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas.
Existing T2I model bias evaluation methods only focus on social biases.
We propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions.
- Score: 49.60774626839712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bias in text-to-image (T2I) models can propagate unfair social
representations and may be used to aggressively market ideas or push
controversial agendas. Existing T2I model bias evaluation methods only focus on
social biases. We look beyond that and instead propose an evaluation
methodology to quantify general biases in T2I generative models, without any
preconceived notions. We assess four state-of-the-art T2I models and compare
their baseline bias characteristics to their respective variants (two for
each), where certain biases have been intentionally induced. We propose three
evaluation metrics to assess model biases including: (i) Distribution bias,
(ii) Jaccard hallucination and (iii) Generative miss-rate. We conduct two
evaluation studies, modelling biases under general, and task-oriented
conditions, using a marketing scenario as the domain for the latter. We also
quantify social biases to compare our findings to related works. Finally, our
methodology is transferred to evaluate captioned-image datasets and measure
their bias. Our approach is objective, domain-agnostic and consistently
measures different forms of T2I model biases. We have developed a web
application and practical implementation of what has been proposed in this
work, which is at https://huggingface.co/spaces/JVice/try-before-you-bias. A
video series with demonstrations is available at
https://www.youtube.com/channel/UCk-0xyUyT0MSd_hkp4jQt1Q
Related papers
- GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
We propose a framework to identify, quantify, and explain biases in an open set setting.
This pipeline leverages a Large Language Model (LLM) to propose biases starting from a set of captions.
We show two variations of this framework: OpenBias and GradBias.
arXiv Detail & Related papers (2024-08-29T16:51:07Z) - VersusDebias: Universal Zero-Shot Debiasing for Text-to-Image Models via SLM-Based Prompt Engineering and Generative Adversary [8.24274551090375]
We introduce VersusDebias, a novel and universal debiasing framework for biases in arbitrary Text-to-Image (T2I) models.
The self-adaptive module generates specialized attribute arrays to post-process hallucinations and debias multiple attributes simultaneously.
In both zero-shot and few-shot scenarios, VersusDebias outperforms existing methods, showcasing its exceptional utility.
arXiv Detail & Related papers (2024-07-28T16:24:07Z) - BIGbench: A Unified Benchmark for Social Bias in Text-to-Image Generative Models Based on Multi-modal LLM [8.24274551090375]
We introduce BIGbench, a unified benchmark for Biases of Image Generation.
Unlike existing benchmarks, BIGbench classifies and evaluates biases across four dimensions.
Our study also reveal new research directions about biases, such as the effect of distillation and irrelevant protected attributes.
arXiv Detail & Related papers (2024-07-21T18:09:40Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
VLBiasBench is a benchmark aimed at evaluating biases in Large Vision-Language Models (LVLMs)
We construct a dataset encompassing nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status and two intersectional bias categories (race x gender, and race x social economic status)
We conduct extensive evaluations on 15 open-source models as well as one advanced closed-source model, providing some new insights into the biases revealing from these models.
arXiv Detail & Related papers (2024-06-20T10:56:59Z) - FAIntbench: A Holistic and Precise Benchmark for Bias Evaluation in Text-to-Image Models [7.30796695035169]
FAIntbench is a holistic and precise benchmark for biases in Text-to-Image (T2I) models.
We applied FAIntbench to evaluate seven recent large-scale T2I models and conducted human evaluation.
Results demonstrated the effectiveness of FAIntbench in identifying various biases.
arXiv Detail & Related papers (2024-05-28T04:18:00Z) - Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFair is a novel approach to address social bias in language models.
We leverage prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias.
arXiv Detail & Related papers (2024-03-14T15:58:36Z) - TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models [22.076898042211305]
We propose a general approach to study and quantify a broad spectrum of biases, for any TTI model and for any prompt.
Our approach automatically identifies potential biases that might be relevant to the given prompt, and measures those biases.
We show that our method is uniquely capable of explaining complex multi-dimensional biases through semantic concepts.
arXiv Detail & Related papers (2023-12-03T02:31:37Z) - It's All Relative: Interpretable Models for Scoring Bias in Documents [10.678219157857946]
We propose an interpretable model to score the bias present in web documents, based only on their textual content.
Our model incorporates assumptions reminiscent of the Bradley-Terry axioms and is trained on pairs of revisions of the same Wikipedia article.
We show that we can interpret the parameters of the trained model to discover the words most indicative of bias.
arXiv Detail & Related papers (2023-07-16T19:35:38Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
We introduce SAME, a novel bias score for semantic bias in embeddings.
We show that SAME is capable of measuring semantic bias and identify potential causes for social bias in downstream tasks.
arXiv Detail & Related papers (2022-03-28T09:28:13Z) - UnQovering Stereotyping Biases via Underspecified Questions [68.81749777034409]
We present UNQOVER, a framework to probe and quantify biases through underspecified questions.
We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors.
We use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion.
arXiv Detail & Related papers (2020-10-06T01:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.