Fortify Your Defenses: Strategic Budget Allocation to Enhance Power Grid
Cybersecurity
- URL: http://arxiv.org/abs/2312.13476v1
- Date: Wed, 20 Dec 2023 23:01:35 GMT
- Title: Fortify Your Defenses: Strategic Budget Allocation to Enhance Power Grid
Cybersecurity
- Authors: Rounak Meyur, Sumit Purohit and Braden K. Webb
- Abstract summary: Given potential cyber-attack sequences for a cyber-physical component in the power grid, find the optimal manner to allocate an available budget to implement necessary preventive mitigation measures.
We formulate the problem as a mixed integer linear program to identify the optimal budget partition and set of mitigation measures.
We show how altering the budget allocation for tasks such as asset management, cybersecurity infrastructure improvement, incident response planning and employee training affects the choice of the optimal set of preventive mitigation measures.
- Score: 1.672787996847537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The abundance of cyber-physical components in modern day power grid with
their diverse hardware and software vulnerabilities has made it difficult to
protect them from advanced persistent threats (APTs). An attack graph depicting
the propagation of potential cyber-attack sequences from the initial access
point to the end objective is vital to identify critical weaknesses of any
cyber-physical system. A cyber security personnel can accordingly plan
preventive mitigation measures for the identified weaknesses addressing the
cyber-attack sequences. However, limitations on available cybersecurity budget
restrict the choice of mitigation measures. We address this aspect through our
framework, which solves the following problem: given potential cyber-attack
sequences for a cyber-physical component in the power grid, find the optimal
manner to allocate an available budget to implement necessary preventive
mitigation measures. We formulate the problem as a mixed integer linear program
(MILP) to identify the optimal budget partition and set of mitigation measures
which minimize the vulnerability of cyber-physical components to potential
attack sequences. We assume that the allocation of budget affects the efficacy
of the mitigation measures. We show how altering the budget allocation for
tasks such as asset management, cybersecurity infrastructure improvement,
incident response planning and employee training affects the choice of the
optimal set of preventive mitigation measures and modifies the associated
cybersecurity risk. The proposed framework can be used by cyber policymakers
and system owners to allocate optimal budgets for various tasks required to
improve the overall security of a cyber-physical system.
Related papers
- Smart Grid Security: A Verified Deep Reinforcement Learning Framework to Counter Cyber-Physical Attacks [2.159496955301211]
Smart grids are vulnerable to strategically crafted cyber-physical attacks.
Malicious attacks can manipulate power demands using high-wattage Internet of Things (IoT) botnet devices.
Grid operators overlook potential scenarios of cyber-physical attacks during their design phase.
We propose a safe Deep Reinforcement Learning (DRL)-based framework for mitigating attacks on smart grids.
arXiv Detail & Related papers (2024-09-24T05:26:20Z) - Enhancing cybersecurity defenses: a multicriteria decision-making approach to MITRE ATT&CK mitigation strategy [0.0]
This paper proposes a defense strategy for the presented security threats by determining and prioritizing which security control to put in place.
This approach helps organizations achieve a more robust and resilient cybersecurity posture.
arXiv Detail & Related papers (2024-07-27T09:47:26Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
This paper introduces the Cyber Resilience Index (CRI), a threat-informed probabilistic approach to quantifying an organisation's defence effectiveness against cyber-attacks (campaigns)
Building upon the Threat-Intelligence Based Security Assessment (TIBSA) methodology, we present a mathematical model that translates complex threat intelligence into an actionable, unified metric similar to a stock market index, that executives can understand and interact with while teams can act upon.
arXiv Detail & Related papers (2024-06-27T17:51:48Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Cyber Insurance for Cyber Resilience [13.712257570488756]
This chapter presents a review of the quantitative cyber insurance design framework.
It builds on the correlation between state-of-the-art attacker vectors and defense mechanisms.
Using the modern techniques in quantifying the risk preferences of individuals, we link the economic impacts of perception manipulation with moral hazard.
arXiv Detail & Related papers (2023-12-05T17:50:34Z) - Deep VULMAN: A Deep Reinforcement Learning-Enabled Cyber Vulnerability
Management Framework [4.685954926214926]
Cyber vulnerability management is a critical function of a cybersecurity operations center (CSOC) that helps protect organizations against cyber-attacks on their computer and network systems.
The current approaches are deterministic and one-time decision-making methods, which do not consider future uncertainties when prioritizing and selecting vulnerabilities for mitigation.
We propose a novel framework, Deep VULMAN, consisting of a deep reinforcement learning agent and an integer programming method to fill this gap in the cyber vulnerability management process.
arXiv Detail & Related papers (2022-08-03T22:32:48Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.