Fed-CO2: Cooperation of Online and Offline Models for Severe Data
Heterogeneity in Federated Learning
- URL: http://arxiv.org/abs/2312.13923v2
- Date: Tue, 26 Dec 2023 13:22:29 GMT
- Title: Fed-CO2: Cooperation of Online and Offline Models for Severe Data
Heterogeneity in Federated Learning
- Authors: Zhongyi Cai, Ye Shi, Wei Huang, Jingya Wang
- Abstract summary: Federated Learning (FL) has emerged as a promising distributed learning paradigm.
The effectiveness of FL is highly dependent on the quality of the data that is being used for training.
We propose Fed-CO$_2$, a universal FL framework that handles both label distribution skew and feature skew.
- Score: 14.914477928398133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has emerged as a promising distributed learning
paradigm that enables multiple clients to learn a global model collaboratively
without sharing their private data. However, the effectiveness of FL is highly
dependent on the quality of the data that is being used for training. In
particular, data heterogeneity issues, such as label distribution skew and
feature skew, can significantly impact the performance of FL. Previous studies
in FL have primarily focused on addressing label distribution skew data
heterogeneity, while only a few recent works have made initial progress in
tackling feature skew issues. Notably, these two forms of data heterogeneity
have been studied separately and have not been well explored within a unified
FL framework. To address this gap, we propose Fed-CO$_{2}$, a universal FL
framework that handles both label distribution skew and feature skew within a
\textbf{C}ooperation mechanism between the \textbf{O}nline and \textbf{O}ffline
models. Specifically, the online model learns general knowledge that is shared
among all clients, while the offline model is trained locally to learn the
specialized knowledge of each individual client. To further enhance model
cooperation in the presence of feature shifts, we design an intra-client
knowledge transfer mechanism that reinforces mutual learning between the online
and offline models, and an inter-client knowledge transfer mechanism to
increase the models' domain generalization ability. Extensive experiments show
that our Fed-CO$_{2}$ outperforms a wide range of existing personalized
federated learning algorithms in terms of handling label distribution skew and
feature skew, both individually and collectively. The empirical results are
supported by our convergence analyses in a simplified setting.
Related papers
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated learning (FL) is a distributed learning framework that leverages commonalities between distributed client datasets to train a global model.
personalized federated learning (PFL) seeks to address this by learning individual models tailored to each client.
We propose an algorithm, pFedFDA, that efficiently generates personalized models by adapting global generative classifiers to their local feature distributions.
arXiv Detail & Related papers (2024-11-01T03:03:52Z) - Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
We propose a novel and general method named Federated Self-supervised Learning with Feature-correlation based Aggregation (FedFoA)
Our insight is to utilize feature correlation to align the feature mappings and calibrate the local model updates across clients during their local training process.
We prove that FedFoA is a model-agnostic training framework and can be easily compatible with state-of-the-art unsupervised FL methods.
arXiv Detail & Related papers (2022-11-14T13:59:50Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
Federated learning (FL) enables distributed participants to collectively learn a strong global model without sacrificing their individual data privacy.
We introduce FedH2L, which is agnostic to both the model architecture and robust to different data distributions across participants.
In contrast to approaches sharing parameters or gradients, FedH2L relies on mutual distillation, exchanging only posteriors on a shared seed set between participants in a decentralized manner.
arXiv Detail & Related papers (2021-01-27T10:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.