Metalearning with Very Few Samples Per Task
- URL: http://arxiv.org/abs/2312.13978v2
- Date: Mon, 1 Apr 2024 14:13:22 GMT
- Title: Metalearning with Very Few Samples Per Task
- Authors: Maryam Aliakbarpour, Konstantina Bairaktari, Gavin Brown, Adam Smith, Nathan Srebro, Jonathan Ullman,
- Abstract summary: We consider a binary classification setting where tasks are related by a shared representation.
Here, the amount of data is measured in terms of the number of tasks $t$ that we need to see and the number of samples $n$ per task.
Our work also yields a characterization of distribution-free multitask learning and reductions between meta and multitask learning.
- Score: 19.78398372660794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metalearning and multitask learning are two frameworks for solving a group of related learning tasks more efficiently than we could hope to solve each of the individual tasks on their own. In multitask learning, we are given a fixed set of related learning tasks and need to output one accurate model per task, whereas in metalearning we are given tasks that are drawn i.i.d. from a metadistribution and need to output some common information that can be easily specialized to new tasks from the metadistribution. We consider a binary classification setting where tasks are related by a shared representation, that is, every task $P$ can be solved by a classifier of the form $f_{P} \circ h$ where $h \in H$ is a map from features to a representation space that is shared across tasks, and $f_{P} \in F$ is a task-specific classifier from the representation space to labels. The main question we ask is how much data do we need to metalearn a good representation? Here, the amount of data is measured in terms of the number of tasks $t$ that we need to see and the number of samples $n$ per task. We focus on the regime where $n$ is extremely small. Our main result shows that, in a distribution-free setting where the feature vectors are in $\mathbb{R}^d$, the representation is a linear map from $\mathbb{R}^d \to \mathbb{R}^k$, and the task-specific classifiers are halfspaces in $\mathbb{R}^k$, we can metalearn a representation with error $\varepsilon$ using $n = k+2$ samples per task, and $d \cdot (1/\varepsilon)^{O(k)}$ tasks. Learning with so few samples per task is remarkable because metalearning would be impossible with $k+1$ samples per task, and because we cannot even hope to learn an accurate task-specific classifier with $k+2$ samples per task. Our work also yields a characterization of distribution-free multitask learning and reductions between meta and multitask learning.
Related papers
- Scaling Distributed Multi-task Reinforcement Learning with Experience
Sharing [38.883540444516605]
DARPA launched the ShELL program, which aims to explore how experience sharing can benefit distributed lifelong learning agents.
We conduct both theoretical and empirical research on distributed multi-task reinforcement learning (RL), where a group of $N$ agents collaboratively solves $M$ tasks.
We propose an algorithm called DistMT-LSVI, where each agent independently learns $epsilon$-optimal policies for all $M$ tasks.
arXiv Detail & Related papers (2023-07-11T22:58:53Z) - Active Representation Learning for General Task Space with Applications
in Robotics [44.36398212117328]
We propose an algorithmic framework for textitactive representation learning, where the learner optimally chooses which source tasks to sample from.
We provide several instantiations under this framework, from bilinear and feature-based nonlinear to general nonlinear cases.
Our algorithms outperform baselines by $20%-70%$ on average.
arXiv Detail & Related papers (2023-06-15T08:27:50Z) - Multi-Task Imitation Learning for Linear Dynamical Systems [50.124394757116605]
We study representation learning for efficient imitation learning over linear systems.
We find that the imitation gap over trajectories generated by the learned target policy is bounded by $tildeOleft( frack n_xHN_mathrmshared + frack n_uN_mathrmtargetright)$.
arXiv Detail & Related papers (2022-12-01T00:14:35Z) - On the Sample Complexity of Representation Learning in Multi-task
Bandits with Global and Local structure [77.60508571062958]
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems.
Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor)
We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(Glog(delta_G)+ Xlog(delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors.
arXiv Detail & Related papers (2022-11-28T08:40:12Z) - On the Power of Multitask Representation Learning in Linear MDP [61.58929164172968]
This paper presents analyses for the statistical benefit of multitask representation learning in linear Markov Decision Process (MDP)
We first discover a emphLeast-Activated-Feature-Abundance (LAFA) criterion, denoted as $kappa$, with which we prove that a straightforward least-square algorithm learns a policy which is $tildeO(H2sqrtfrackappa mathcalC(Phi)2 kappa dNT+frackappa dn)
arXiv Detail & Related papers (2021-06-15T11:21:06Z) - Sample Efficient Linear Meta-Learning by Alternating Minimization [74.40553081646995]
We study a simple alternating minimization method (MLLAM) which alternately learns the low-dimensional subspace and the regressors.
We show that for a constant subspace dimension MLLAM obtains nearly-optimal estimation error, despite requiring only $Omega(log d)$ samples per task.
We propose a novel task subset selection scheme that ensures the same strong statistical guarantee as MLLAM.
arXiv Detail & Related papers (2021-05-18T06:46:48Z) - A No-Free-Lunch Theorem for MultiTask Learning [19.645741778058227]
We consider a seemingly favorable classification scenario where all tasks $P_t$ share a common optimal classifier $h*,$.
We show that, even though such regimes admit minimax rates accounting for both $n$ and $N$, no adaptive algorithm exists.
arXiv Detail & Related papers (2020-06-29T03:03:29Z) - On the Theory of Transfer Learning: The Importance of Task Diversity [114.656572506859]
We consider $t+1$ tasks parameterized by functions of the form $f_j circ h$ in a general function class $mathcalF circ mathcalH$.
We show that for diverse training tasks the sample complexity needed to learn the shared representation across the first $t$ training tasks scales as $C(mathcalH) + t C(mathcalF)$.
arXiv Detail & Related papers (2020-06-20T20:33:59Z) - Few-Shot Learning via Learning the Representation, Provably [115.7367053639605]
This paper studies few-shot learning via representation learning.
One uses $T$ source tasks with $n_1$ data per task to learn a representation in order to reduce the sample complexity of a target task.
arXiv Detail & Related papers (2020-02-21T17:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.