Simple and general bounds on quantum random access codes
- URL: http://arxiv.org/abs/2312.14142v2
- Date: Wed, 10 Jan 2024 18:36:42 GMT
- Title: Simple and general bounds on quantum random access codes
- Authors: M\'at\'e Farkas, Nikolai Miklin, Armin Tavakoli
- Abstract summary: We provide bounds for the fully general setting of n independent variables, each selected from a d-dimensional classical alphabet.
We demonstrate numerically that even though the bound is not tight overall, it can still yield a good approximation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random access codes are a type of communication task that is widely used in
quantum information science. The optimal average success probability that can
be achieved through classical strategies is known for any random access code.
However, only a few cases are solved exactly for quantum random access codes.
In this paper, we provide bounds for the fully general setting of n independent
variables, each selected from a d-dimensional classical alphabet and encoded in
a D-dimensional quantum system subject to an arbitrary quantum measurement. The
bound recovers the exactly known special cases, and we demonstrate numerically
that even though the bound is not tight overall, it can still yield a good
approximation.
Related papers
- Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Two instances of random access code in the quantum regime [0.09545101073027092]
We consider two classes of quantum generalisations of Random Access Code (RAC)
First class is based on a random access code with quantum inputs and output known as No-Signalling Quantum RAC (NS-QRAC)
Second class is based on a random access code with a quantum channel and shared entanglement.
arXiv Detail & Related papers (2022-08-30T17:43:37Z) - Almost qudits in the prepare-and-measure scenario [0.0]
We introduce and investigate quantum information encoded in carriers that nearly, but not entirely, correspond to standard qudits.
We show how small higher-dimensional components can significantly compromise the conclusions of established protocols.
We also consider viewing almost qubit systems as a physical resource available to the experimenter.
arXiv Detail & Related papers (2022-08-16T18:00:07Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Singleton Bounds for Entanglement-Assisted Classical and Quantum Error
Correcting Codes [0.0]
We show that entirely quantum Shannon theoretic methods can be used to derive Singleton bounds on the performance of EACQ error correcting codes.
We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size is large enough.
arXiv Detail & Related papers (2022-02-04T15:22:18Z) - Probably approximately correct quantum source coding [0.0]
Holevo's and Nayak's bounds give an estimate of the amount of classical information that can be stored in a quantum state.
We show two novel applications in quantum learning theory and delegated quantum computation with a purely classical client.
arXiv Detail & Related papers (2021-12-13T17:57:30Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Quantum Advantages in (n,d)->1 Random Access Codes [1.0485739694839669]
We first characterize optimal classical RACs, proving that the well-known classical strategy known as majority-encoding-identity-decoding is indeed optimal.
We then construct a quantum protocol by exploiting only two incompatible measurements, the minimal requirement, and show the advantages beyond the classical one.
arXiv Detail & Related papers (2015-10-11T12:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.