LLM4VG: Large Language Models Evaluation for Video Grounding
- URL: http://arxiv.org/abs/2312.14206v3
- Date: Thu, 12 Sep 2024 02:57:07 GMT
- Title: LLM4VG: Large Language Models Evaluation for Video Grounding
- Authors: Wei Feng, Xin Wang, Hong Chen, Zeyang Zhang, Houlun Chen, Zihan Song, Yuwei Zhou, Yuekui Yang, Haiyang Wu, Wenwu Zhu,
- Abstract summary: This paper systematically evaluates the performance of different LLMs on video grounding tasks.
We propose prompt methods to integrate the instruction of VG and description from different kinds of generators.
Our experimental evaluations lead to two conclusions: (i) the existing VidLLMs are still far away from achieving satisfactory video grounding performance, and more time-related video tasks should be included to further fine-tune these models.
- Score: 39.40610479454726
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, researchers have attempted to investigate the capability of LLMs in handling videos and proposed several video LLM models. However, the ability of LLMs to handle video grounding (VG), which is an important time-related video task requiring the model to precisely locate the start and end timestamps of temporal moments in videos that match the given textual queries, still remains unclear and unexplored in literature. To fill the gap, in this paper, we propose the LLM4VG benchmark, which systematically evaluates the performance of different LLMs on video grounding tasks. Based on our proposed LLM4VG, we design extensive experiments to examine two groups of video LLM models on video grounding: (i) the video LLMs trained on the text-video pairs (denoted as VidLLM), and (ii) the LLMs combined with pretrained visual description models such as the video/image captioning model. We propose prompt methods to integrate the instruction of VG and description from different kinds of generators, including caption-based generators for direct visual description and VQA-based generators for information enhancement. We also provide comprehensive comparisons of various VidLLMs and explore the influence of different choices of visual models, LLMs, prompt designs, etc, as well. Our experimental evaluations lead to two conclusions: (i) the existing VidLLMs are still far away from achieving satisfactory video grounding performance, and more time-related video tasks should be included to further fine-tune these models, and (ii) the combination of LLMs and visual models shows preliminary abilities for video grounding with considerable potential for improvement by resorting to more reliable models and further guidance of prompt instructions.
Related papers
- InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.
We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.
Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - SCBench: A Sports Commentary Benchmark for Video LLMs [19.13963551534595]
We develop a benchmark for sports video commentary generation for Video Large Language Models (Video LLMs)
$textbfSCBench$ is a six-dimensional metric specifically designed for our task, upon which we propose a GPT-based evaluation method.
Our results found InternVL-Chat-2 achieves the best performance with 5.44, surpassing the second-best by 1.04.
arXiv Detail & Related papers (2024-12-23T15:13:56Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - TempCompass: Do Video LLMs Really Understand Videos? [36.28973015469766]
Existing benchmarks fail to provide a comprehensive feedback on the temporal perception ability of Video LLMs.
We propose the textbfTemp benchmark, which introduces a diversity of high-quality temporal aspects and task formats.
arXiv Detail & Related papers (2024-03-01T12:02:19Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z) - VideoLLM: Modeling Video Sequence with Large Language Models [70.32832021713864]
Existing video understanding models are often task-specific and lack a comprehensive capability of handling diverse tasks.
We propose a novel framework called VideoLLM that leverages the sequence reasoning capabilities of pre-trained LLMs.
VideoLLM incorporates a carefully designed Modality and Semantic Translator, which convert inputs from various modalities into a unified token sequence.
arXiv Detail & Related papers (2023-05-22T17:51:22Z) - mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality [95.76661165594884]
mPLUG-Owl is a training paradigm that equips large language models (LLMs) with multi-modal abilities.
The training paradigm involves a two-stage method for aligning image and text, which learns visual knowledge with the assistance of LLM.
Experimental results show that our model outperforms existing multi-modal models.
arXiv Detail & Related papers (2023-04-27T13:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.