REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback
- URL: http://arxiv.org/abs/2312.14436v3
- Date: Sun, 19 Jan 2025 16:21:24 GMT
- Title: REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback
- Authors: Souradip Chakraborty, Anukriti Singh, Amisha Bhaskar, Pratap Tokekar, Dinesh Manocha, Amrit Singh Bedi,
- Abstract summary: A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.
Recent methods aim to mitigate misalignment by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
- Score: 61.54791065013767
- License:
- Abstract: The effectiveness of reinforcement learning (RL) agents in continuous control robotics tasks is mainly dependent on the design of the underlying reward function, which is highly prone to reward hacking. A misalignment between the reward function and underlying human preferences (values, social norms) can lead to catastrophic outcomes in the real world especially in the context of robotics for critical decision making. Recent methods aim to mitigate misalignment by learning reward functions from human preferences and subsequently performing policy optimization. However, these methods inadvertently introduce a distribution shift during reward learning due to ignoring the dependence of agent-generated trajectories on the reward learning objective, ultimately resulting in sub-optimal alignment. Hence, in this work, we address this challenge by advocating for the adoption of regularized reward functions that more accurately mirror the intended behaviors of the agent. We propose a novel concept of reward regularization within the robotic RLHF (RL from Human Feedback) framework, which we refer to as \emph{agent preferences}. Our approach uniquely incorporates not just human feedback in the form of preferences but also considers the preferences of the RL agent itself during the reward function learning process. This dual consideration significantly mitigates the issue of distribution shift in RLHF with a computationally tractable algorithm. We provide a theoretical justification for the proposed algorithm by formulating the robotic RLHF problem as a bilevel optimization problem and developing a computationally tractable version of the same. We demonstrate the efficiency of our algorithm {\ours} in several continuous control benchmarks in DeepMind Control Suite \cite{tassa2018deepmind}.
Related papers
- MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention [81.56607128684723]
We introduce MEReQ (Maximum-Entropy Residual-Q Inverse Reinforcement Learning), designed for sample-efficient alignment from human intervention.
MereQ infers a residual reward function that captures the discrepancy between the human expert's and the prior policy's underlying reward functions.
It then employs Residual Q-Learning (RQL) to align the policy with human preferences using this residual reward function.
arXiv Detail & Related papers (2024-06-24T01:51:09Z) - Behavior Alignment via Reward Function Optimization [23.92721220310242]
We introduce a new framework that integrates auxiliary rewards reflecting a designer's domain knowledge with the environment's primary rewards.
We evaluate our method's efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional control challenges.
arXiv Detail & Related papers (2023-10-29T13:45:07Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
We introduce Contrastive Preference Learning (CPL), an algorithm for learning optimal policies from preferences without learning reward functions.
CPL is fully off-policy, uses only a simple contrastive objective, and can be applied to arbitrary MDPs.
arXiv Detail & Related papers (2023-10-20T16:37:56Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Reinforcement Learning from Diverse Human Preferences [68.4294547285359]
This paper develops a method for crowd-sourcing preference labels and learning from diverse human preferences.
The proposed method is tested on a variety of tasks in DMcontrol and Meta-world.
It has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback.
arXiv Detail & Related papers (2023-01-27T15:18:54Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Robot Learning of Mobile Manipulation with Reachability Behavior Priors [38.49783454634775]
Mobile Manipulation (MM) systems are ideal candidates for taking up the role of a personal assistant in unstructured real-world environments.
Among other challenges, MM requires effective coordination of the robot's embodiments for executing tasks that require both mobility and manipulation.
We study the integration of robotic reachability priors in actor-critic RL methods for accelerating the learning of MM for reaching and fetching tasks.
arXiv Detail & Related papers (2022-03-08T12:44:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.