Data is Moody: Discovering Data Modification Rules from Process Event
Logs
- URL: http://arxiv.org/abs/2312.14571v1
- Date: Fri, 22 Dec 2023 10:00:50 GMT
- Title: Data is Moody: Discovering Data Modification Rules from Process Event
Logs
- Authors: Marco Bjarne Schuster, Boris Wiegand, Jilles Vreeken
- Abstract summary: We propose an algorithm to find accurate yet succinct and interpretable if-then rules how the process modifies data.
We show Moody indeed finds compact and interpretable rules, needs little data for accurate discovery, and is robust to noise.
- Score: 31.187669045960085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although event logs are a powerful source to gain insight about the behavior
of the underlying business process, existing work primarily focuses on finding
patterns in the activity sequences of an event log, while ignoring event
attribute data. Event attribute data has mostly been used to predict event
occurrences and process outcome, but the state of the art neglects to mine
succinct and interpretable rules how event attribute data changes during
process execution. Subgroup discovery and rule-based classification approaches
lack the ability to capture the sequential dependencies present in event logs,
and thus lead to unsatisfactory results with limited insight into the process
behavior.
Given an event log, we are interested in finding accurate yet succinct and
interpretable if-then rules how the process modifies data. We formalize the
problem in terms of the Minimum Description Length (MDL) principle, by which we
choose the model with the best lossless description of the data. Additionally,
we propose the greedy Moody algorithm to efficiently search for rules. By
extensive experiments on both synthetic and real-world data, we show Moody
indeed finds compact and interpretable rules, needs little data for accurate
discovery, and is robust to noise.
Related papers
- Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - Abnormal Event Detection via Hypergraph Contrastive Learning [54.80429341415227]
Abnormal event detection plays an important role in many real applications.
In this paper, we study the unsupervised abnormal event detection problem in Attributed Heterogeneous Information Network.
A novel hypergraph contrastive learning method, named AEHCL, is proposed to fully capture abnormal event patterns.
arXiv Detail & Related papers (2023-04-02T08:23:20Z) - Alignment-based conformance checking over probabilistic events [4.060731229044571]
We introduce a weighted trace model and weighted alignment cost function, and a custom threshold parameter that controls the level of confidence on the event data.
The resulting algorithm considers activities of lower but sufficiently high probability that better align with the process model.
arXiv Detail & Related papers (2022-09-09T14:07:37Z) - EA$^2$E: Improving Consistency with Event Awareness for Document-Level
Argument Extraction [52.43978926985928]
We introduce the Event-Aware Argument Extraction (EA$2$E) model with augmented context for training and inference.
Experiment results on WIKIEVENTS and ACE2005 datasets demonstrate the effectiveness of EA$2$E.
arXiv Detail & Related papers (2022-05-30T04:33:51Z) - Exploring Business Process Deviance with Sequential and Declarative
Patterns [3.039637436705478]
Deviance mining is concerned with uncovering the reasons for deviant executions by analyzing event logs stored by the systems supporting the execution of a business process.
The problem of explaining deviations in business processes is first investigated by using features based on sequential and declarative patterns.
The explanations are then extracted by direct and indirect methods for rule induction.
arXiv Detail & Related papers (2021-11-24T12:16:07Z) - Event Data Association via Robust Model Fitting for Event-based Object Tracking [66.05728523166755]
We propose a novel Event Data Association (called EDA) approach to explicitly address the event association and fusion problem.
The proposed EDA seeks for event trajectories that best fit the event data, in order to perform unifying data association and information fusion.
The experimental results show the effectiveness of EDA under challenging scenarios, such as high speed, motion blur, and high dynamic range conditions.
arXiv Detail & Related papers (2021-10-25T13:56:00Z) - Robust Event Classification Using Imperfect Real-world PMU Data [58.26737360525643]
We study robust event classification using imperfect real-world phasor measurement unit (PMU) data.
We develop a novel machine learning framework for training robust event classifiers.
arXiv Detail & Related papers (2021-10-19T17:41:43Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
We propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction.
We adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model.
arXiv Detail & Related papers (2021-09-13T20:50:37Z) - Conformance Checking over Uncertain Event Data [0.45119235878273]
We analyze the previously unexplored setting of uncertain event logs.
In such event logs uncertainty is recorded explicitly, i.e., the time, activity and case of an event may be unclear or imprecise.
We show how upper and lower bounds for conformance can be obtained by aligning an uncertain trace onto a regular process model.
arXiv Detail & Related papers (2020-09-29T14:27:30Z) - Partial Order Resolution of Event Logs for Process Conformance Checking [10.58705988536919]
A key assumption of existing conformance checking techniques is that all events are associated with timestamps that allow to infer a total order of events per process instance.
We present several estimators for this task, incorporating different notions of behavioral abstraction.
Our experiments with real-world and synthetic data reveal that our approach improves accuracy over the state-of-the-art considerably.
arXiv Detail & Related papers (2020-07-05T18:43:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.