Absence of a dissipative quantum phase transition in Josephson junctions: Theory
- URL: http://arxiv.org/abs/2312.14754v5
- Date: Wed, 15 Jan 2025 16:21:12 GMT
- Title: Absence of a dissipative quantum phase transition in Josephson junctions: Theory
- Authors: Carles Altimiras, Daniel Esteve, Çağlar Girit, Hélène le Sueur, Philippe Joyez,
- Abstract summary: We investigate the superconducting - insulating quantum phase transition long believed to occur in the RSJ.
For all parameters, we find that shunting a junction makes it more superconducting.
Our results fully support and confirm the experimental invalidation of this quantum phase transition by Murani et al. in 2020.
- Score: 0.0
- License:
- Abstract: We investigate the resistively shunted Josephson junction (RSJ) at equilibrium, using linear response, an exact path integral technique and symmetry considerations. All three approaches independently lead to conclude that the superconducting - insulating quantum phase transition long believed to occur in the RSJ, cannot exist. For all parameters, we find that shunting a junction makes it more superconducting. We reveal that the UV cutoff of the resistor plays an unforeseen key role in these systems, and show that the erroneous prediction of an insulating state resulted in part from assuming it would not. We also explain why the RSJ physics differs from that of 1D quantum impurity problems. Our results fully support and confirm the experimental invalidation of this quantum phase transition by Murani et al. in 2020.
Related papers
- Experimental observation of spontaneous symmetry breaking in a quantum phase transition [2.2706551270477613]
Spontaneous symmetry breaking plays a central role in understanding a large variety of phenomena associated with phase transitions.
We report an experimental demonstration of such a process with a quantum Rabi model engineered with a superconducting circuit.
Results demonstrate that the environment-induced decoherence plays a critical role in the SSB.
arXiv Detail & Related papers (2024-06-28T03:14:27Z) - Gauge invariant quantization for circuits including Josephson junctions [0.0]
A new theory of superconductivity attributes the origin of superconductivity to the appearance of a non-trivial Berry connection from many-electron wave functions.
We re-examine the quantization of superconducting qubit circuits.
arXiv Detail & Related papers (2024-03-13T02:21:58Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Josephson-like oscillations in toroidal spinor Bose-Einstein
condensates: a prospective symmetry probe [0.0]
We present an intriguing effect caused by a thin finite barrier in a quasi-one-dimensional toroidal spinor Bose--Einstein condensate (BEC)
In this system, the atomic current density flowing through the edges of the barrier oscillates, such as the electrical current through a Josephson junction in a superconductor.
We also show how the nontrivial broken-symmetry states of spinor BECs change the structure of this Josephson-like current, creating the possibility to probe the spinor symmetry.
arXiv Detail & Related papers (2022-04-17T04:54:11Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Absence versus Presence of Dissipative Quantum Phase Transition in
Josephson Junctions [0.0]
Dissipative quantum phase transition has been widely believed to occur in a Josephson junction coupled to a resistor despite a lack of concrete experimental evidence.
We reveal breakdown of previous perturbative arguments and defy the common wisdom that the transition always occurs at the quantum resistance.
Our predictions can be tested in recent experiments realizing high-impedance long superconducting waveguides.
arXiv Detail & Related papers (2021-11-26T19:00:01Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.