Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue
- URL: http://arxiv.org/abs/2312.15316v2
- Date: Wed, 17 Jan 2024 17:07:37 GMT
- Title: Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue
- Authors: Guan-Ting Lin, Prashanth Gurunath Shivakumar, Ankur Gandhe, Chao-Han
Huck Yang, Yile Gu, Shalini Ghosh, Andreas Stolcke, Hung-yi Lee, Ivan Bulyko
- Abstract summary: Paralinguistics-enhanced Generative Pretrained Transformer (ParalinGPT)
Model takes the conversational context of text, speech embeddings, and paralinguistic attributes as input prompts within a serialized multitasking framework.
We utilize the Switchboard-1 corpus, including its sentiment labels as the paralinguistic attribute, as our spoken dialogue dataset.
- Score: 71.15186328127409
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated superior abilities in tasks
such as chatting, reasoning, and question-answering. However, standard LLMs may
ignore crucial paralinguistic information, such as sentiment, emotion, and
speaking style, which are essential for achieving natural, human-like spoken
conversation, especially when such information is conveyed by acoustic cues. We
therefore propose Paralinguistics-enhanced Generative Pretrained Transformer
(ParalinGPT), an LLM that utilizes text and speech modalities to better model
the linguistic content and paralinguistic attributes of spoken dialogue. The
model takes the conversational context of text, speech embeddings, and
paralinguistic attributes as input prompts within a serialized multitasking
multimodal framework. Specifically, our framework serializes tasks in the order
of current paralinguistic attribute prediction, response paralinguistic
attribute prediction, and response text generation with autoregressive
conditioning. We utilize the Switchboard-1 corpus, including its sentiment
labels as the paralinguistic attribute, as our spoken dialogue dataset.
Experimental results indicate the proposed serialized multitasking method
outperforms typical sequence classification techniques on current and response
sentiment classification. Furthermore, leveraging conversational context and
speech embeddings significantly improves both response text generation and
sentiment prediction. Our proposed framework achieves relative improvements of
6.7%, 12.0%, and 3.5% in current sentiment accuracy, response sentiment
accuracy, and response text BLEU score, respectively.
Related papers
- Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction.
Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data.
We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora.
arXiv Detail & Related papers (2024-11-26T17:19:09Z) - Speechworthy Instruction-tuned Language Models [71.8586707840169]
We show that both prompting and preference learning increase the speech-suitability of popular instruction-tuned LLMs.
We share lexical, syntactical, and qualitative analyses to showcase how each method contributes to improving the speech-suitability of generated responses.
arXiv Detail & Related papers (2024-09-23T02:34:42Z) - Integrating Paralinguistics in Speech-Empowered Large Language Models for Natural Conversation [46.93969003104427]
This paper introduces an extensive speech-text LLM framework, the Unified Spoken Dialog Model (USDM)
USDM is designed to generate coherent spoken responses with naturally occurring prosodic features relevant to the given input speech.
Our approach effectively generates natural-sounding spoken responses, surpassing previous and cascaded baselines.
arXiv Detail & Related papers (2024-02-08T14:35:09Z) - Few-Shot Spoken Language Understanding via Joint Speech-Text Models [18.193191170754744]
Recent work on speech representation models jointly pre-trained with text has demonstrated the potential of improving speech representations.
We leverage such shared representations to address the persistent challenge of limited data availability in spoken language understanding tasks.
By employing a pre-trained speech-text model, we find that models fine-tuned on text can be effectively transferred to speech testing data.
arXiv Detail & Related papers (2023-10-09T17:59:21Z) - Can Language Models Learn to Listen? [96.01685069483025]
We present a framework for generating appropriate facial responses from a listener in dyadic social interactions based on the speaker's words.
Our approach autoregressively predicts a response of a listener: a sequence of listener facial gestures, quantized using a VQ-VAE.
We show that our generated listener motion is fluent and reflective of language semantics through quantitative metrics and a qualitative user study.
arXiv Detail & Related papers (2023-08-21T17:59:02Z) - Joint Modelling of Spoken Language Understanding Tasks with Integrated
Dialog History [30.20353302347147]
We propose a novel model architecture that learns dialog context to jointly predict the intent, dialog act, speaker role, and emotion for the spoken utterance.
Our experiments show that our joint model achieves similar results to task-specific classifiers.
arXiv Detail & Related papers (2023-05-01T16:26:18Z) - Context-Dependent Embedding Utterance Representations for Emotion
Recognition in Conversations [1.8126187844654875]
We approach Emotion Recognition in Conversations leveraging the conversational context.
We propose context-dependent embedding representations of each utterance.
The effectiveness of our approach is validated on the open-domain DailyDialog dataset and on the task-oriented EmoWOZ dataset.
arXiv Detail & Related papers (2023-04-17T12:37:57Z) - SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data [100.46303484627045]
We propose a cross-modal Speech and Language Model (SpeechLM) to align speech and text pre-training with a pre-defined unified representation.
Specifically, we introduce two alternative discrete tokenizers to bridge the speech and text modalities.
We evaluate SpeechLM on various spoken language processing tasks including speech recognition, speech translation, and universal representation evaluation framework SUPERB.
arXiv Detail & Related papers (2022-09-30T09:12:10Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
Spoken language understanding requires a model to analyze input acoustic signal to understand its linguistic content and make predictions.
Various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text.
We propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules.
arXiv Detail & Related papers (2020-10-05T19:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.