Hardware-Aware DNN Compression via Diverse Pruning and Mixed-Precision
Quantization
- URL: http://arxiv.org/abs/2312.15322v1
- Date: Sat, 23 Dec 2023 18:50:13 GMT
- Title: Hardware-Aware DNN Compression via Diverse Pruning and Mixed-Precision
Quantization
- Authors: Konstantinos Balaskas, Andreas Karatzas, Christos Sad, Kostas Siozios,
Iraklis Anagnostopoulos, Georgios Zervakis, J\"org Henkel
- Abstract summary: We propose an automated framework to compress Deep Neural Networks (DNNs) in a hardware-aware manner by jointly employing pruning and quantization.
Our framework achieves $39%$ average energy reduction for datasets $1.7%$ average accuracy loss and outperforms significantly the state-of-the-art approaches.
- Score: 1.0235078178220354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) have shown significant advantages in a wide
variety of domains. However, DNNs are becoming computationally intensive and
energy hungry at an exponential pace, while at the same time, there is a vast
demand for running sophisticated DNN-based services on resource constrained
embedded devices. In this paper, we target energy-efficient inference on
embedded DNN accelerators. To that end, we propose an automated framework to
compress DNNs in a hardware-aware manner by jointly employing pruning and
quantization. We explore, for the first time, per-layer fine- and
coarse-grained pruning, in the same DNN architecture, in addition to low
bit-width mixed-precision quantization for weights and activations.
Reinforcement Learning (RL) is used to explore the associated design space and
identify the pruning-quantization configuration so that the energy consumption
is minimized whilst the prediction accuracy loss is retained at acceptable
levels. Using our novel composite RL agent we are able to extract
energy-efficient solutions without requiring retraining and/or fine tuning. Our
extensive experimental evaluation over widely used DNNs and the CIFAR-10/100
and ImageNet datasets demonstrates that our framework achieves $39\%$ average
energy reduction for $1.7\%$ average accuracy loss and outperforms
significantly the state-of-the-art approaches.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - DeepAxe: A Framework for Exploration of Approximation and Reliability
Trade-offs in DNN Accelerators [0.9556128246747769]
The role of Deep Neural Networks (DNNs) in safety-critical applications is expanding.
DNNs experience massive growth in terms of computation power.
It raises the necessity of improving the reliability of DNN accelerators.
arXiv Detail & Related papers (2023-03-14T20:42:38Z) - The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks [0.368986335765876]
quantization and pruning of parameters can both compress the model size, reduce memory footprints, and facilitate low-latency execution.
We study various combinations of pruning and quantization in isolation, cumulatively, and simultaneously to a state-of-the-art SNN targeting gesture recognition.
We show that this state-of-the-art model is amenable to aggressive parameter quantization, not suffering from any loss in accuracy down to ternary weights.
arXiv Detail & Related papers (2023-02-08T16:25:20Z) - Energy-efficient DNN Inference on Approximate Accelerators Through
Formal Property Exploration [1.0323063834827415]
We present an automated framework for weight-to-approximation mapping for approximate Deep Neural Networks (DNNs)
At the MAC unit level, our evaluation surpassed already energy-efficient mappings by more than $times2$ in terms of energy gains.
arXiv Detail & Related papers (2022-07-25T17:07:00Z) - Sparsifying Binary Networks [3.8350038566047426]
Binary neural networks (BNNs) have demonstrated their ability to solve complex tasks with comparable accuracy as full-precision deep neural networks (DNNs)
Despite the recent improvements, they suffer from a fixed and limited compression factor that may result insufficient for certain devices with very limited resources.
We propose sparse binary neural networks (SBNNs), a novel model and training scheme which introduces sparsity in BNNs and a new quantization function for binarizing the network's weights.
arXiv Detail & Related papers (2022-07-11T15:54:41Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - ShiftAddNet: A Hardware-Inspired Deep Network [87.18216601210763]
ShiftAddNet is an energy-efficient multiplication-less deep neural network.
It leads to both energy-efficient inference and training, without compromising expressive capacity.
ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies.
arXiv Detail & Related papers (2020-10-24T05:09:14Z) - TaxoNN: A Light-Weight Accelerator for Deep Neural Network Training [2.5025363034899732]
We present a novel approach to add the training ability to a baseline DNN accelerator (inference only) by splitting the SGD algorithm into simple computational elements.
Based on this approach we propose TaxoNN, a light-weight accelerator for DNN training.
Our experimental results show that TaxoNN delivers, on average, 0.97% higher misclassification rate compared to a full-precision implementation.
arXiv Detail & Related papers (2020-10-11T09:04:19Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.