An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms
- URL: http://arxiv.org/abs/2312.15375v1
- Date: Sun, 24 Dec 2023 00:13:41 GMT
- Title: An Empirical Study of Efficiency and Privacy of Federated Learning
Algorithms
- Authors: Sofia Zahri and Hajar Bennouri and Ahmed M. Abdelmoniem
- Abstract summary: In today's world, the rapid expansion of IoT networks and the proliferation of smart devices have resulted in the generation of substantial amounts of heterogeneous data.
To handle this data effectively, advanced data processing technologies are necessary to guarantee the preservation of both privacy and efficiency.
Federated learning emerged as a distributed learning method that trains models locally and aggregates them on a server to preserve data privacy.
- Score: 2.994794762377111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's world, the rapid expansion of IoT networks and the proliferation
of smart devices in our daily lives, have resulted in the generation of
substantial amounts of heterogeneous data. These data forms a stream which
requires special handling. To handle this data effectively, advanced data
processing technologies are necessary to guarantee the preservation of both
privacy and efficiency. Federated learning emerged as a distributed learning
method that trains models locally and aggregates them on a server to preserve
data privacy. This paper showcases two illustrative scenarios that highlight
the potential of federated learning (FL) as a key to delivering efficient and
privacy-preserving machine learning within IoT networks. We first give the
mathematical foundations for key aggregation algorithms in federated learning,
i.e., FedAvg and FedProx. Then, we conduct simulations, using Flower Framework,
to show the \textit{efficiency} of these algorithms by training deep neural
networks on common datasets and show a comparison between the accuracy and loss
metrics of FedAvg and FedProx. Then, we present the results highlighting the
trade-off between maintaining privacy versus accuracy via simulations -
involving the implementation of the differential privacy (DP) method - in
Pytorch and Opacus ML frameworks on common FL datasets and data distributions
for both FedAvg and FedProx strategies.
Related papers
- FedSR: A Semi-Decentralized Federated Learning Algorithm for Non-IIDness in IoT System [2.040586739710704]
In the Industrial Internet of Things (IoT), a large amount of data will be generated every day.
Due to privacy and security issues, it is difficult to collect all these data together to train deep learning models.
In this paper, we combine centralized federated learning with decentralized federated learning to design a semi-decentralized cloud-edge-device hierarchical federated learning framework.
arXiv Detail & Related papers (2024-03-19T09:34:01Z) - Factor-Assisted Federated Learning for Personalized Optimization with
Heterogeneous Data [6.024145412139383]
Federated learning is an emerging distributed machine learning framework aiming at protecting data privacy.
Data in different clients contain both common knowledge and personalized knowledge.
We develop a novel personalized federated learning framework for heterogeneous data, which we refer to as FedSplit.
arXiv Detail & Related papers (2023-12-07T13:05:47Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - Privacy-Preserving Serverless Edge Learning with Decentralized Small
Data [13.254530176359182]
Distributed training strategies have recently become a promising approach to ensure data privacy when training deep models.
This paper extends conventional serverless platforms with serverless edge learning architectures and provides an efficient distributed training framework from the networking perspective.
arXiv Detail & Related papers (2021-11-29T21:04:49Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Federated Doubly Stochastic Kernel Learning for Vertically Partitioned
Data [93.76907759950608]
We propose a doubly kernel learning algorithm for vertically partitioned data.
We show that FDSKL is significantly faster than state-of-the-art federated learning methods when dealing with kernels.
arXiv Detail & Related papers (2020-08-14T05:46:56Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.