README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP
- URL: http://arxiv.org/abs/2312.15561v5
- Date: Fri, 25 Oct 2024 14:30:28 GMT
- Title: README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP
- Authors: Zonghai Yao, Nandyala Siddharth Kantu, Guanghao Wei, Hieu Tran, Zhangqi Duan, Sunjae Kwon, Zhichao Yang, README annotation team, Hong Yu,
- Abstract summary: We introduce a new task of automatically generating lay definitions, aiming to simplify medical terms into patient-friendly lay language.
We first created the dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions.
We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality.
- Score: 9.432205523734707
- License:
- Abstract: The advancement in healthcare has shifted focus toward patient-centric approaches, particularly in self-care and patient education, facilitated by access to Electronic Health Records (EHR). However, medical jargon in EHRs poses significant challenges in patient comprehension. To address this, we introduce a new task of automatically generating lay definitions, aiming to simplify complex medical terms into patient-friendly lay language. We first created the README dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions, each offering context-aware lay definitions manually annotated by domain experts. We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality. We then used README as the training data for models and leveraged a Retrieval-Augmented Generation method to reduce hallucinations and improve the quality of model outputs. Our extensive automatic and human evaluations demonstrate that open-source mobile-friendly models, when fine-tuned with high-quality data, are capable of matching or even surpassing the performance of state-of-the-art closed-source large language models like ChatGPT. This research represents a significant stride in closing the knowledge gap in patient education and advancing patient-centric healthcare solutions.
Related papers
- Speaking the Same Language: Leveraging LLMs in Standardizing Clinical Data for AI [0.0]
This study delves into the adoption of large language models to address specific challenges, specifically, the standardization of healthcare data.
Our results illustrate that employing large language models significantly diminishes the necessity for manual data curation.
The proposed methodology has the propensity to expedite the integration of AI in healthcare, ameliorate the quality of patient care, whilst minimizing the time and financial resources necessary for the preparation of data for AI.
arXiv Detail & Related papers (2024-08-16T20:51:21Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs)
The methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon.
The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98%.
arXiv Detail & Related papers (2024-05-31T02:53:22Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Data-Centric Foundation Models in Computational Healthcare: A Survey [21.53211505568379]
Foundation models (FMs) as an emerging suite of AI techniques have struck a wave of opportunities in computational healthcare.
We discuss key perspectives in AI security, assessment, and alignment with human values.
We offer a promising outlook of FM-based analytics to enhance the performance of patient outcome and clinical workflow.
arXiv Detail & Related papers (2024-01-04T08:00:32Z) - LLMs Accelerate Annotation for Medical Information Extraction [7.743388571513413]
We propose an approach that combines Large Language Models (LLMs) with human expertise to create an efficient method for generating ground truth labels for medical text annotation.
We rigorously evaluate our method on a medical information extraction task, demonstrating that our approach not only substantially cuts down on human intervention but also maintains high accuracy.
arXiv Detail & Related papers (2023-12-04T19:26:13Z) - PULSAR: Pre-training with Extracted Healthcare Terms for Summarising
Patients' Problems and Data Augmentation with Black-box Large Language Models [25.363775123262307]
Automatic summarisation of a patient's problems in the form of a problem list can aid stakeholders in understanding a patient's condition, reducing workload and cognitive bias.
BioNLP 2023 Shared Task 1A focuses on generating a list of diagnoses and problems from the provider's progress notes during hospitalisation.
One component employs large language models (LLMs) for data augmentation; the other is an abstractive summarisation LLM with a novel pre-training objective for generating the patients' problems summarised as a list.
Our approach was ranked second among all submissions to the shared task.
arXiv Detail & Related papers (2023-06-05T10:17:50Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.