A Survey on Open-Set Image Recognition
- URL: http://arxiv.org/abs/2312.15571v1
- Date: Mon, 25 Dec 2023 00:30:23 GMT
- Title: A Survey on Open-Set Image Recognition
- Authors: Jiayin Sun and Qiulei Dong
- Abstract summary: Open-set image recognition (OSR) aims to both classify known-class samples and identify unknown-class samples in the testing set.
We introduce a new taxonomy, under which we comprehensively review the existing DNN-based OSR methods.
We compare the performances of some typical and state-of-the-art OSR methods on both coarse-grained datasets and fine-grained datasets.
- Score: 18.474539379698538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-set image recognition (OSR) aims to both classify known-class samples
and identify unknown-class samples in the testing set, which supports robust
classifiers in many realistic applications, such as autonomous driving, medical
diagnosis, security monitoring, etc. In recent years, open-set recognition
methods have achieved more and more attention, since it is usually difficult to
obtain holistic information about the open world for model training. In this
paper, we aim to summarize the up-to-date development of recent OSR methods,
considering their rapid development in recent two or three years. Specifically,
we firstly introduce a new taxonomy, under which we comprehensively review the
existing DNN-based OSR methods. Then, we compare the performances of some
typical and state-of-the-art OSR methods on both coarse-grained datasets and
fine-grained datasets under both standard-dataset setting and cross-dataset
setting, and further give the analysis of the comparison. Finally, we discuss
some open issues and possible future directions in this community.
Related papers
- Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
We aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR)
We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them.
We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR.
arXiv Detail & Related papers (2024-08-29T17:55:07Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - LORD: Leveraging Open-Set Recognition with Unknown Data [10.200937444995944]
LORD is a framework to Leverage Open-set Recognition by exploiting unknown data.
We identify three model-agnostic training strategies that exploit background data and applied them to well-established classifiers.
arXiv Detail & Related papers (2023-08-24T06:12:41Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Open Set Recognition using Vision Transformer with an Additional
Detection Head [6.476341388938684]
We propose a novel approach to open set recognition (OSR) based on the vision transformer (ViT) technique.
Our approach employs two separate training stages. First, a ViT model is trained to perform closed set classification.
Then, an additional detection head is attached to the embedded features extracted by the ViT, trained to force the representations of known data to class-specific clusters compactly.
arXiv Detail & Related papers (2022-03-16T07:34:58Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - A Survey on Open Set Recognition [0.0]
Open Set Recognition (OSR) is about dealing with unknown situations that were not learned by the models during training.
In this paper, we provide a survey of existing works about OSR and distinguish their respective advantages and disadvantages.
It is concluded that OSR can appropriately deal with unknown instances in the real-world where capturing all possible classes in the training data is not practical.
arXiv Detail & Related papers (2021-08-18T16:40:03Z) - Open-World Semi-Supervised Learning [66.90703597468377]
We introduce a new open-world semi-supervised learning setting in which the model is required to recognize previously seen classes.
We propose ORCA, an approach that learns to simultaneously classify and cluster the data.
We demonstrate that ORCA accurately discovers novel classes and assigns samples to previously seen classes on benchmark image classification datasets.
arXiv Detail & Related papers (2021-02-06T07:11:07Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.