GenCast: Diffusion-based ensemble forecasting for medium-range weather
- URL: http://arxiv.org/abs/2312.15796v2
- Date: Wed, 1 May 2024 16:30:43 GMT
- Title: GenCast: Diffusion-based ensemble forecasting for medium-range weather
- Authors: Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Dominic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, Matthew Willson,
- Abstract summary: We introduce GenCast, a probabilistic weather model with greater skill and speed than the top operational medium-range weather forecast in the world.
GenCast generates an ensemble of 15-day global forecasts, at 12-hour steps and 0.25 degree latitude-longitude, for over 80 surface and atmospheric variables in 8 minutes.
It has greater skill than ENS on 97.4% of 1320 targets we evaluated, and better predicts extreme weather, tropical cyclones, and wind power production.
- Score: 10.845679586464026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weather forecasts are fundamentally uncertain, so predicting the range of probable weather scenarios is crucial for important decisions, from warning the public about hazardous weather, to planning renewable energy use. Here, we introduce GenCast, a probabilistic weather model with greater skill and speed than the top operational medium-range weather forecast in the world, the European Centre for Medium-Range Forecasts (ECMWF)'s ensemble forecast, ENS. Unlike traditional approaches, which are based on numerical weather prediction (NWP), GenCast is a machine learning weather prediction (MLWP) method, trained on decades of reanalysis data. GenCast generates an ensemble of stochastic 15-day global forecasts, at 12-hour steps and 0.25 degree latitude-longitude resolution, for over 80 surface and atmospheric variables, in 8 minutes. It has greater skill than ENS on 97.4% of 1320 targets we evaluated, and better predicts extreme weather, tropical cyclones, and wind power production. This work helps open the next chapter in operational weather forecasting, where critical weather-dependent decisions are made with greater accuracy and efficiency.
Related papers
- Super Resolution On Global Weather Forecasts [0.1747623282473278]
Group seeks to improve upon existing deep learning based forecasting methods by increasing spatial resolutions of global weather predictions.
Specifically, we are interested in performing super resolution (SR) on GraphCast temperature predictions by increasing the global precision from 1 degree of accuracy to 0.5 degrees.
arXiv Detail & Related papers (2024-09-17T19:07:13Z) - CoDiCast: Conditional Diffusion Model for Weather Prediction with Uncertainty Quantification [25.325450602084484]
CoDiCast is a conditional diffusion model to generate accurate global weather prediction.
It can generate 3-day global weather forecasts, at 6-hour steps and $5.625circ$-longitude, for over 5 variables, in about 12 minutes on a commodity A100 machine with 80GB memory.
arXiv Detail & Related papers (2024-09-09T18:18:47Z) - FuXi Weather: An end-to-end machine learning weather data assimilation and forecasting system [13.824417759272785]
This paper introduces FuXi Weather, an end-to-end machine learning based weather forecasting system.
FuXi Weather employs specialized data preprocessing and multi-modal data fusion techniques to integrate information from diverse sources.
It independently generates robust and accurate 10-day global weather forecasts at a spatial resolution of 0.25text.
arXiv Detail & Related papers (2024-08-10T07:42:01Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.