Automating Knowledge Acquisition for Content-Centric Cognitive Agents
Using LLMs
- URL: http://arxiv.org/abs/2312.16378v1
- Date: Wed, 27 Dec 2023 02:31:51 GMT
- Title: Automating Knowledge Acquisition for Content-Centric Cognitive Agents
Using LLMs
- Authors: Sanjay Oruganti, Sergei Nirenburg, Jesse English, Marjorie McShane
- Abstract summary: The paper describes a system that uses large language model (LLM) technology to support the automatic learning of new entries in an intelligent agent's semantic lexicon.
The process is bootstrapped by an existing non-toy lexicon and a natural language generator that converts formal, ontologically-grounded representations of meaning into natural language sentences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The paper describes a system that uses large language model (LLM) technology
to support the automatic learning of new entries in an intelligent agent's
semantic lexicon. The process is bootstrapped by an existing non-toy lexicon
and a natural language generator that converts formal, ontologically-grounded
representations of meaning into natural language sentences. The learning method
involves a sequence of LLM requests and includes an automatic quality control
step. To date, this learning method has been applied to learning multiword
expressions whose meanings are equivalent to those of transitive verbs in the
agent's lexicon. The experiment demonstrates the benefits of a hybrid learning
architecture that integrates knowledge-based methods and resources with both
traditional data analytics and LLMs.
Related papers
- Can LLMs Help Create Grammar?: Automating Grammar Creation for Endangered Languages with In-Context Learning [0.0]
This paper explores how Large Language Models (LLMs) can assist in generating grammatical information for low-resource languages with limited amount of data.
Our methodology involves organising the existing linguistic data and prompting to efficiently enable to generate formal XLE grammar.
This study highlights the potential of LLMs to enhance language documentation efforts, providing a cost-effective solution for generating linguistic data and contributing to the preservation of endangered languages.
arXiv Detail & Related papers (2024-12-14T20:43:12Z) - LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
We introduce LatentQA, the task of answering open-ended questions about model activations in natural language.
We propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs.
Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations.
arXiv Detail & Related papers (2024-12-11T18:59:33Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
We introduce a novel framework based on large language models (LLMs) that combines a progressive prompting algorithm with a dual-agent system, named LLM-Duo.
Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - LLMs4OL: Large Language Models for Ontology Learning [0.0]
We propose the LLMs4OL approach, which utilizes Large Language Models (LLMs) for Ontology Learning (OL)
LLMs have shown significant advancements in natural language processing, demonstrating their ability to capture complex language patterns in different knowledge domains.
The evaluations encompass diverse genres of ontological knowledge, including lexicosemantic knowledge in WordNet, geographical knowledge in GeoNames, and medical knowledge in UMLS.
arXiv Detail & Related papers (2023-07-31T13:27:21Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
Large Language Models (LLMs) encode meanings of words in the form of distributed semantics.
Recent studies have shown that LLMs tend to generate unintended, inconsistent, or wrong texts as outputs.
We propose a novel ensemble learning method, Interpretable Ensemble Representation Learning (IERL), that systematically combines LLM and crowdsourced knowledge representations.
arXiv Detail & Related papers (2023-06-24T05:02:34Z) - Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models [70.82705830137708]
We introduce Data-driven Instruction Augmentation for Language-conditioned control (DIAL)
We utilize semi-language labels leveraging the semantic understanding of CLIP to propagate knowledge onto large datasets of unlabelled demonstration data.
DIAL enables imitation learning policies to acquire new capabilities and generalize to 60 novel instructions unseen in the original dataset.
arXiv Detail & Related papers (2022-11-21T18:56:00Z) - LISA: Learning Interpretable Skill Abstractions from Language [85.20587800593293]
We propose a hierarchical imitation learning framework that can learn diverse, interpretable skills from language-conditioned demonstrations.
Our method demonstrates a more natural way to condition on language in sequential decision-making problems.
arXiv Detail & Related papers (2022-02-28T19:43:24Z) - Context-Tuning: Learning Contextualized Prompts for Natural Language
Generation [52.835877179365525]
We propose a novel continuous prompting approach, called Context-Tuning, to fine-tuning PLMs for natural language generation.
Firstly, the prompts are derived based on the input text, so that they can elicit useful knowledge from PLMs for generation.
Secondly, to further enhance the relevance of the generated text to the inputs, we utilize continuous inverse prompting to refine the process of natural language generation.
arXiv Detail & Related papers (2022-01-21T12:35:28Z) - Few-shot Learning for Slot Tagging with Attentive Relational Network [35.624877181332636]
Metric-based learning is a well-known family of methods for few-shot learning, especially in computer vision.
We propose a novel metric-based learning architecture - Attentive Network.
The results on SNIPS show that our proposed method outperforms other state-of-the-art metric-based learning methods.
arXiv Detail & Related papers (2021-03-03T11:24:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.