Automating Knowledge Acquisition for Content-Centric Cognitive Agents
Using LLMs
- URL: http://arxiv.org/abs/2312.16378v1
- Date: Wed, 27 Dec 2023 02:31:51 GMT
- Title: Automating Knowledge Acquisition for Content-Centric Cognitive Agents
Using LLMs
- Authors: Sanjay Oruganti, Sergei Nirenburg, Jesse English, Marjorie McShane
- Abstract summary: The paper describes a system that uses large language model (LLM) technology to support the automatic learning of new entries in an intelligent agent's semantic lexicon.
The process is bootstrapped by an existing non-toy lexicon and a natural language generator that converts formal, ontologically-grounded representations of meaning into natural language sentences.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The paper describes a system that uses large language model (LLM) technology
to support the automatic learning of new entries in an intelligent agent's
semantic lexicon. The process is bootstrapped by an existing non-toy lexicon
and a natural language generator that converts formal, ontologically-grounded
representations of meaning into natural language sentences. The learning method
involves a sequence of LLM requests and includes an automatic quality control
step. To date, this learning method has been applied to learning multiword
expressions whose meanings are equivalent to those of transitive verbs in the
agent's lexicon. The experiment demonstrates the benefits of a hybrid learning
architecture that integrates knowledge-based methods and resources with both
traditional data analytics and LLMs.
Related papers
- RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
We propose a novel framework, RuAG, to automatically distill large volumes of offline data into interpretable first-order logic rules.
We evaluate our framework on public and private industrial tasks, including natural language processing, time-series, decision-making, and industrial tasks.
arXiv Detail & Related papers (2024-11-04T00:01:34Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
We introduce a novel framework based on large language models (LLMs) that combines a progressive prompting algorithm with a dual-agent system, named LLM-Duo.
Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - LLMs4OL: Large Language Models for Ontology Learning [0.0]
We propose the LLMs4OL approach, which utilizes Large Language Models (LLMs) for Ontology Learning (OL)
LLMs have shown significant advancements in natural language processing, demonstrating their ability to capture complex language patterns in different knowledge domains.
The evaluations encompass diverse genres of ontological knowledge, including lexicosemantic knowledge in WordNet, geographical knowledge in GeoNames, and medical knowledge in UMLS.
arXiv Detail & Related papers (2023-07-31T13:27:21Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
Large Language Models (LLMs) encode meanings of words in the form of distributed semantics.
Recent studies have shown that LLMs tend to generate unintended, inconsistent, or wrong texts as outputs.
We propose a novel ensemble learning method, Interpretable Ensemble Representation Learning (IERL), that systematically combines LLM and crowdsourced knowledge representations.
arXiv Detail & Related papers (2023-06-24T05:02:34Z) - Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models [70.82705830137708]
We introduce Data-driven Instruction Augmentation for Language-conditioned control (DIAL)
We utilize semi-language labels leveraging the semantic understanding of CLIP to propagate knowledge onto large datasets of unlabelled demonstration data.
DIAL enables imitation learning policies to acquire new capabilities and generalize to 60 novel instructions unseen in the original dataset.
arXiv Detail & Related papers (2022-11-21T18:56:00Z) - LISA: Learning Interpretable Skill Abstractions from Language [85.20587800593293]
We propose a hierarchical imitation learning framework that can learn diverse, interpretable skills from language-conditioned demonstrations.
Our method demonstrates a more natural way to condition on language in sequential decision-making problems.
arXiv Detail & Related papers (2022-02-28T19:43:24Z) - Context-Tuning: Learning Contextualized Prompts for Natural Language
Generation [52.835877179365525]
We propose a novel continuous prompting approach, called Context-Tuning, to fine-tuning PLMs for natural language generation.
Firstly, the prompts are derived based on the input text, so that they can elicit useful knowledge from PLMs for generation.
Secondly, to further enhance the relevance of the generated text to the inputs, we utilize continuous inverse prompting to refine the process of natural language generation.
arXiv Detail & Related papers (2022-01-21T12:35:28Z) - Few-shot Learning for Slot Tagging with Attentive Relational Network [35.624877181332636]
Metric-based learning is a well-known family of methods for few-shot learning, especially in computer vision.
We propose a novel metric-based learning architecture - Attentive Network.
The results on SNIPS show that our proposed method outperforms other state-of-the-art metric-based learning methods.
arXiv Detail & Related papers (2021-03-03T11:24:24Z) - Universal Sentence Representation Learning with Conditional Masked
Language Model [7.334766841801749]
We present Conditional Masked Language Modeling (M) to effectively learn sentence representations.
Our English CMLM model achieves state-of-the-art performance on SentEval.
As a fully unsupervised learning method, CMLM can be conveniently extended to a broad range of languages and domains.
arXiv Detail & Related papers (2020-12-28T18:06:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.