Graph Neural Networks for Antisocial Behavior Detection on Twitter
- URL: http://arxiv.org/abs/2312.16755v1
- Date: Thu, 28 Dec 2023 00:25:12 GMT
- Title: Graph Neural Networks for Antisocial Behavior Detection on Twitter
- Authors: Martina Toshevska, Slobodan Kalajdziski, and Sonja Gievska
- Abstract summary: Social media resurgence of antisocial behavior has exerted a downward spiral on stereotypical beliefs, and hateful comments towards individuals and social groups.
Advances in graph neural networks employed on massive quantities of graph-structured data raise high hopes for the future of mediating communication on social media platforms.
An approach based on graph convolutional data was employed to better capture the dependencies between the heterogeneous types of data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media resurgence of antisocial behavior has exerted a downward spiral
on stereotypical beliefs, and hateful comments towards individuals and social
groups, as well as false or distorted news. The advances in graph neural
networks employed on massive quantities of graph-structured data raise high
hopes for the future of mediating communication on social media platforms. An
approach based on graph convolutional data was employed to better capture the
dependencies between the heterogeneous types of data.
Utilizing past and present experiences on the topic, we proposed and
evaluated a graph-based approach for antisocial behavior detection, with
general applicability that is both language- and context-independent. In this
research, we carried out an experimental validation of our graph-based approach
on several PAN datasets provided as part of their shared tasks, that enable the
discussion of the results obtained by the proposed solution.
Related papers
- On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
We assess attribution methods from a perspective not previously explored in the graph domain: retraining.
The core idea is to retrain the network on important (or not important) relationships as identified by the attributions.
We run our analysis on four state-of-the-art GNN attribution methods and five synthetic and real-world graph classification datasets.
arXiv Detail & Related papers (2024-01-01T02:03:35Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Classification of vertices on social networks by multiple approaches [1.370151489527964]
In the case of social networks, it is crucial to evaluate the labels of discrete communities.
For each of these interaction-based entities, a social graph, a mailing dataset, and two citation sets are selected as the testbench repositories.
This paper was not only assessed the most valuable method but also determined how graph neural networks work.
arXiv Detail & Related papers (2023-01-13T09:42:55Z) - Self-supervised Hypergraph Representation Learning for Sociological
Analysis [52.514283292498405]
We propose a fundamental methodology to support the further fusion of data mining techniques and sociological behavioral criteria.
First, we propose an effective hypergraph awareness and a fast line graph construction framework.
Second, we propose a novel hypergraph-based neural network to learn social influence flowing from users to users.
arXiv Detail & Related papers (2022-12-22T01:20:29Z) - Exploring Fake News Detection with Heterogeneous Social Media Context
Graphs [4.2177790395417745]
Fake news detection has become a research area that goes way beyond a purely academic interest as it has direct implications on our society as a whole.
We propose to construct heterogeneous social context graphs around news articles and reformulate the problem as a graph classification task.
arXiv Detail & Related papers (2022-12-13T13:29:47Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - CommuNety: A Deep Learning System for the Prediction of Cohesive Social
Communities [14.839117147209603]
We propose CommuNety, a deep learning system for the prediction of cohesive social networks using images.
The proposed deep learning model consists of hierarchical CNN architecture to learn descriptive features related to each cohesive network.
The paper also proposes a novel Face Co-occurrence Frequency algorithm to quantify existence of people in images, and a novel photo ranking method to analyze the strength of relationship between different individuals in a predicted social network.
arXiv Detail & Related papers (2020-07-29T11:03:22Z) - Recursive Social Behavior Graph for Trajectory Prediction [49.005219590582676]
We formulate social representations supervised by group-based annotations into a social behavior graph, called Recursive Social Behavior Graph.
With the guidance of Recursive Social Behavior Graph, we surpass state-of-the-art method on ETH and UCY dataset for 11.1% in ADE and 10.8% in FDE.
arXiv Detail & Related papers (2020-04-22T06:01:48Z) - Adversarial Attack on Community Detection by Hiding Individuals [68.76889102470203]
We focus on black-box attack and aim to hide targeted individuals from the detection of deep graph community detection models.
We propose an iterative learning framework that takes turns to update two modules: one working as the constrained graph generator and the other as the surrogate community detection model.
arXiv Detail & Related papers (2020-01-22T09:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.