Exact Consistency Tests for Gaussian Mixture Filters using Normalized Deviation Squared Statistics
- URL: http://arxiv.org/abs/2312.17420v2
- Date: Fri, 15 Mar 2024 01:04:33 GMT
- Title: Exact Consistency Tests for Gaussian Mixture Filters using Normalized Deviation Squared Statistics
- Authors: Nisar Ahmed, Luke Burks, Kailah Cabral, Alyssa Bekai Rose,
- Abstract summary: This paper derives a new exact result for consistency testing within the framework of normalized deviation squared (NDS) statistics.
The accuracy and utility of the resulting consistency tests are numerically demonstrated on static and dynamic mixture estimation examples.
- Score: 3.3748750222488657
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider the problem of evaluating dynamic consistency in discrete time probabilistic filters that approximate stochastic system state densities with Gaussian mixtures. Dynamic consistency means that the estimated probability distributions correctly describe the actual uncertainties. As such, the problem of consistency testing naturally arises in applications with regards to estimator tuning and validation. However, due to the general complexity of the density functions involved, straightforward approaches for consistency testing of mixture-based estimators have remained challenging to define and implement. This paper derives a new exact result for Gaussian mixture consistency testing within the framework of normalized deviation squared (NDS) statistics. It is shown that NDS test statistics for generic multivariate Gaussian mixture models exactly follow mixtures of generalized chi-square distributions, for which efficient computational tools are available. The accuracy and utility of the resulting consistency tests are numerically demonstrated on static and dynamic mixture estimation examples.
Related papers
- Marginalization Consistent Mixture of Separable Flows for Probabilistic Irregular Time Series Forecasting [4.714246221974192]
We develop a novel probabilistic irregular time series forecasting model, Marginalization Consistent Mixtures of Separable Flows (moses)
moses outperforms other state-of-the-art marginalization consistent models, performs on par with ProFITi, but different from ProFITi, guarantee marginalization consistency.
arXiv Detail & Related papers (2024-06-11T13:28:43Z) - Normalizing Flow Ensembles for Rich Aleatoric and Epistemic Uncertainty
Modeling [21.098866735156207]
We propose an ensemble of Normalizing Flows (NF) which are state-of-the-art in modeling aleatoric uncertainty.
The ensembles are created via sets of fixed dropout masks, making them less expensive than creating separate NF models.
We demonstrate how to leverage the unique structure of NFs, base distributions, to estimate aleatoric uncertainty without relying on samples.
arXiv Detail & Related papers (2023-02-02T18:38:35Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
We propose a dynamic mixture of zero-mean Gaussian distributions for the time-varying error process.
The proposed method can be seamlessly integrated into existing deep-learning frameworks with only a few additional parameters to be learned.
We evaluate the proposed method on a traffic speed forecasting task and find that our method not only improves model horizons but also provides interpretabletemporal correlation structures.
arXiv Detail & Related papers (2022-12-10T22:50:00Z) - Moment Estimation for Nonparametric Mixture Models Through Implicit
Tensor Decomposition [7.139680863764187]
We present an alternating least squares type numerical optimization scheme to estimate conditionally-independent mixture models in $mathbbRn$.
We compute the cumulative distribution functions, higher moments and other statistics of the component distributions through linear solves.
Numerical experiments demonstrate the competitive performance of the algorithm, and its applicability to many models and applications.
arXiv Detail & Related papers (2022-10-25T23:31:33Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Continuous Mixtures of Tractable Probabilistic Models [10.667104977730304]
Probabilistic models based on continuous latent spaces, such as variational autoencoders, can be understood as uncountable mixture models.
Probabilistic circuits (PCs) can be understood as hierarchical discrete mixture models.
In this paper, we investigate a hybrid approach, namely continuous mixtures of tractable models with a small latent dimension.
arXiv Detail & Related papers (2022-09-21T18:18:32Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Consistent Estimation of Identifiable Nonparametric Mixture Models from
Grouped Observations [84.81435917024983]
This work proposes an algorithm that consistently estimates any identifiable mixture model from grouped observations.
A practical implementation is provided for paired observations, and the approach is shown to outperform existing methods.
arXiv Detail & Related papers (2020-06-12T20:44:22Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.