MVPatch: More Vivid Patch for Adversarial Camouflaged Attacks on Object Detectors in the Physical World
- URL: http://arxiv.org/abs/2312.17431v3
- Date: Fri, 19 Jul 2024 04:55:57 GMT
- Title: MVPatch: More Vivid Patch for Adversarial Camouflaged Attacks on Object Detectors in the Physical World
- Authors: Zheng Zhou, Hongbo Zhao, Ju Liu, Qiaosheng Zhang, Liwei Geng, Shuchang Lyu, Wenquan Feng,
- Abstract summary: We introduce generalization theory into the context of Adversarial Patches (APs)
We propose a Dual-Perception-Based Framework (DPBF) to generate the More Vivid Patch (MVPatch), which enhances transferability, stealthiness, and practicality.
MVPatch achieves superior transferability and a natural appearance in both digital and physical domains, underscoring its effectiveness and stealthiness.
- Score: 7.1343035828597685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that Adversarial Patches (APs) can effectively manipulate object detection models. However, the conspicuous patterns often associated with these patches tend to attract human attention, posing a significant challenge. Existing research has primarily focused on enhancing attack efficacy in the physical domain while often neglecting the optimization of stealthiness and transferability. Furthermore, applying APs in real-world scenarios faces major challenges related to transferability, stealthiness, and practicality. To address these challenges, we introduce generalization theory into the context of APs, enabling our iterative process to simultaneously enhance transferability and refine visual correlation with realistic images. We propose a Dual-Perception-Based Framework (DPBF) to generate the More Vivid Patch (MVPatch), which enhances transferability, stealthiness, and practicality. The DPBF integrates two key components: the Model-Perception-Based Module (MPBM) and the Human-Perception-Based Module (HPBM), along with regularization terms. The MPBM employs ensemble strategy to reduce object confidence scores across multiple detectors, thereby improving AP transferability with robust theoretical support. Concurrently, the HPBM introduces a lightweight method for achieving visual similarity, creating natural and inconspicuous adversarial patches without relying on additional generative models. The regularization terms further enhance the practicality of the generated APs in the physical domain. Additionally, we introduce naturalness and transferability scores to provide an unbiased assessment of APs. Extensive experimental validation demonstrates that MVPatch achieves superior transferability and a natural appearance in both digital and physical domains, underscoring its effectiveness and stealthiness.
Related papers
- MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
Deepfakes have recently raised significant trust issues and security concerns among the public.
ViT-based methods take advantage of the expressivity of transformers, achieving superior detection performance.
This work introduces Mixture-of-Experts modules for Face Forgery Detection (MoE-FFD), a generalized yet parameter-efficient ViT-based approach.
arXiv Detail & Related papers (2024-04-12T13:02:08Z) - Suppress and Rebalance: Towards Generalized Multi-Modal Face
Anti-Spoofing [26.901402236963374]
Face Anti-Spoofing (FAS) is crucial for securing face recognition systems against presentation attacks.
Many multi-modal FAS approaches have emerged, but they face challenges in generalizing to unseen attacks and deployment conditions.
arXiv Detail & Related papers (2024-02-29T16:06:36Z) - DOEPatch: Dynamically Optimized Ensemble Model for Adversarial Patches Generation [12.995762461474856]
We introduce the concept of energy and treat the adversarial patches generation process as an optimization of the adversarial patches to minimize the total energy of the person'' category.
By adopting adversarial training, we construct a dynamically optimized ensemble model.
We carried out six sets of comparative experiments and tested our algorithm on five mainstream object detection models.
arXiv Detail & Related papers (2023-12-28T08:58:13Z) - Exploring the Physical World Adversarial Robustness of Vehicle Detection [13.588120545886229]
Adrial attacks can compromise the robustness of real-world detection models.
We propose an innovative instant-level data generation pipeline using the CARLA simulator.
Our findings highlight diverse model performances under adversarial conditions.
arXiv Detail & Related papers (2023-08-07T11:09:12Z) - Diffusion to Confusion: Naturalistic Adversarial Patch Generation Based
on Diffusion Model for Object Detector [18.021582628066554]
We propose a novel naturalistic adversarial patch generation method based on the diffusion models (DM)
We are the first to propose DM-based naturalistic adversarial patch generation for object detectors.
arXiv Detail & Related papers (2023-07-16T15:22:30Z) - DAP: A Dynamic Adversarial Patch for Evading Person Detectors [8.187375378049353]
This paper introduces a novel approach that produces a Dynamic Adversarial Patch (DAP)
DAP maintains a naturalistic appearance while optimizing attack efficiency and robustness to real-world transformations.
Experimental results demonstrate that the proposed approach outperforms state-of-the-art attacks.
arXiv Detail & Related papers (2023-05-19T11:52:42Z) - Defensive Patches for Robust Recognition in the Physical World [111.46724655123813]
Data-end defense improves robustness by operations on input data instead of modifying models.
Previous data-end defenses show low generalization against diverse noises and weak transferability across multiple models.
We propose a defensive patch generation framework to address these problems by helping models better exploit these features.
arXiv Detail & Related papers (2022-04-13T07:34:51Z) - Defending From Physically-Realizable Adversarial Attacks Through
Internal Over-Activation Analysis [61.68061613161187]
Z-Mask is a robust and effective strategy to improve the robustness of convolutional networks against adversarial attacks.
The presented defense relies on specific Z-score analysis performed on the internal network features to detect and mask the pixels corresponding to adversarial objects in the input image.
Additional experiments showed that Z-Mask is also robust against possible defense-aware attacks.
arXiv Detail & Related papers (2022-03-14T17:41:46Z) - On the Robustness of Quality Measures for GANs [136.18799984346248]
This work evaluates the robustness of quality measures of generative models such as Inception Score (IS) and Fr'echet Inception Distance (FID)
We show that such metrics can also be manipulated by additive pixel perturbations.
arXiv Detail & Related papers (2022-01-31T06:43:09Z) - Harnessing Perceptual Adversarial Patches for Crowd Counting [92.79051296850405]
Crowd counting is vulnerable to adversarial examples in the physical world.
This paper proposes the Perceptual Adrial Patch (PAP) generation framework to learn the shared perceptual features between models.
arXiv Detail & Related papers (2021-09-16T13:51:39Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
In a real-world scenario like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs)
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches.
arXiv Detail & Related papers (2021-08-13T11:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.